你的系统如果要支持百万连接,架构应该如何设计?

33 篇文章 13 订阅
25 篇文章 9 订阅
本文探讨了如何设计一个系统以支撑百万用户连接的高并发请求处理架构。从连接的概念出发,分析了短连接和长连接的优缺点,特别是长连接在消耗线程资源方面的挑战。以Kafka为例,介绍了它采用的Reactor多路复用模型,通过一个acceptor线程和processor线程池实现高效处理大量连接,避免了大量线程的使用。这种架构优化使得有限的线程可以处理成千上万个连接,实现了高并发处理能力。
摘要由CSDN通过智能技术生成
V-xin:ruyuanhadeng获得600+页原创精品文章汇总PDF

目录

  • 1、到底什么是连接?
  • 2、为什么每次发送请求都要建立连接?
  • 3、长连接模式下需要耗费大量资源
  • 4、Kafka遇到的问题:应对大量客户端连接
  • 5、Kafka的架构实践:Reactor多路复用
  • 6、优化后的架构是如何支撑大量连接的

这篇文章,给大家聊聊:如果你设计一个系统需要支撑百万用户连接,应该如何来设计其高并发请求处理架构?


1、到底什么是连接?

假如说现在你有一个系统,他需要连接很多很多的硬件设备,这些硬件设备都要跟你的系统来通信。

那么,怎么跟你的系统通信呢?

首先,他一定会跟你的系统建立连接,然后会基于那个连接发送请求给你的系统。

接着你的系统会返回响应给那个系统,最后是大家一起把连接给断开,释放掉网络资源。

所以我们来看一下下面的那个图,感受一下这个所谓的连接到底是个什么概念。

在这里插入图片描述

2、为什么每次发送请求都要建立连接?

但是大家看着上面的那个图,是不是感觉有一个很大的问题。

什么问题呢?那就是为啥每次发送请求,都必须要建立一个连接,然后再断开一个连接?

要知道,网络连接的建立和连接涉及到多次网络通信,本质是一个比较耗费资源的过程。

所以说咱们完全没必要每次发送请求都要建立一次连接,断开一次连接。

我们完全可以建立好一个连接,然后设备就不停的发送请求过来,系统就通过那个连接返回响应。

大家完全可以多次通过一个连接发送请求和返回响应,这就是所谓的长连接。

也就是说,如果你一个连接建立之后,然后发送请求,接着就断开,那这个连接维持的时间是很短的,这个就是所谓的短连接。


那如果一个设备跟你的系统建立好一个连接,然后接着就不停的通过这个连接发送请求接收响应,就可以避免不停的创建连接和断开连接的开销了。

大家看下面的图,体验一下这个过程。在图里面,两次连接之间,有很多次发送请求和接收响应的过程,这样就可以利用一个连接但是进行多次通信了。

在这里插入图片描述

3、长连接模式下需要耗费大量线程资源

但是现在问题又来了,长连接的模式确实是不错的,但是如果说每个设备都要跟系统长期维持一个连接,那么对于系统来说就需要搞一个线程,这个线程需要去维护一个设备的长连接,然后通过这个连接跟一个设备不停的通信,接收人家发送过来的请求,返回响应给人家。

大家看下面的图,每个设备都要跟系统维持一个连接,那么对于每个设备的连接,系统都会有一个独立的线程来维护这个连接。

因为你必须要有一个线程不停的尝试从网络连接中读取请求,接着要处理请求,最后还要返回响应给设备。

在这里插入图片描述

那么这种模式有什么缺点呢?

缺点是很显而易见的,假如说此时你有上百万个设备要跟你的系统进行连接,假设你的系统做了集群部署一共有100个服务实例,难道每个服务实例要维持1万个连接支撑跟1万个设备的通信?

如果这样的话,每个服务实例不就是要维持1万个线程来维持1万个连接了吗?大家觉得这个事儿靠谱吗?

根据线上的生产经验,一般4核8G的标准服务用的虚拟机,自己开辟的工作线程在一两百个就会让CPU负载很高了,最佳的建议就是在几十个工作线程就差不多。

所以要是期望每个服务实例来维持上万个线程,那几乎是不可能的,所以这种模式最大的问题就在于这里,没法支撑大量连接。


4、Kafka遇到的问题:应对大量客户端连接

实际上,对于大名鼎鼎的消息系统Kafka来说,他也是会面对同样的问题,因为他需要应对大量的客户端连接。

有很多生产者和消费者都要跟Kafka建立类似上面的长连接,然后基于一个连接,一直不停的通信。

举个例子,比如生产者需要通过一个连接,不停的发送数据给Kafka。然后Kafka也要通过这个连接不停的返回响应给生产者。

消费者也需要通过一个连接不停的从Kafka获取数据,Kafka需要通过这个连接不停的返回数据给消费者。

大家看下面的图,感受一下Kafka的生产现场。

在这里插入图片描述

那假如Kafka就简单的按照这个架构来处理,如果你的公司里有几万几十万个的生产者或者消费者的服务实例,难道Kafka集群就要为了几万几十万个连接来维护这么多的线程吗?

同样,这是不现实的,因为线程是昂贵的资源,不可能在集群里使用那么多的线程。


5、Kafka的架构实践:Reactor多路复用

针对这个问题,大名鼎鼎的Kafka采用的架构策略是Reactor多路复用模型。

简单来说,就是搞一个acceptor线程,基于底层操作系统的支持,实现连接请求监听。

如果有某个设备发送了建立连接的请求过来,那么那个线程就把这个建立好的连接交给processor线程。

每个processor线程会被分配N多个连接,一个线程就可以负责维持N多个连接,他同样会基于底层操作系统的支持监听N多连接的请求。


如果某个连接发送了请求过来,那么这个processor线程就会把请求放到一个请求队列里去。

接着后台有一个线程池,这个线程池里有工作线程,会从请求队列里获取请求,处理请求,接着将请求对应的响应放到每个processor线程对应的一个响应队列里去。

最后,processor线程会把自己的响应队列里的响应发送回给客户端。

说了这么多,还是来一张图,大家看下面的图,就可以理解上述整个过程了。

在这里插入图片描述

6、优化后的架构是如何支撑大量连接的?

那么上面优化后的那套架构,是如何支撑大量连接的呢?

其实很简单。这里最关键的一个因素,就是processor线程是一个人维持N个线程,基于底层操作系统的特殊机制的支持,一个人可以监听N个连接的请求。

这是极为关键的一个步骤,就仅此一个步骤就可以让一个线程支持多个连接了,不需要一个连接一个线程来支持。

而且那个processor线程仅仅是接收请求和发送响应,所有的请求都会入队列排队,交给后台线程池来处理。

比如说按照100万连接来计算,如果有100台机器来处理,按照老的模式,每台机器需要维持1万个线程来处理1万个连接。


但是如果按照这种多路复用的模式,可能就比如10个processor + 40个线程的线程池,一共50个线程就可以上万连接。

在这种模式下,每台机器有限的线程数量可以抗住大量的连接。

因此实际上我们在设计这种支撑大量连接的系统的时候,完全可以参考这种架构,设计成多路复用的模式,用几十个线程处理成千上万个连接,最终实现百万连接的处理架构。

V-xin:ruyuanhadeng获得600+页原创精品文章汇总PDF

另外推荐儒猿课堂的1元系列课程给您,欢迎加入一起学习~

互联网Java工程师面试突击课(1元专享)

SpringCloudAlibaba零基础入门到项目实战(1元专享)

亿级流量下的电商详情页系统实战项目(1元专享)

Kafka消息中间件内核源码精讲(1元专享)

12个实战案例带你玩转Java并发编程(1元专享)

Elasticsearch零基础入门到精通(1元专享)

基于Java手写分布式中间件系统实战(1元专享)

基于ShardingSphere的分库分表实战课(1元专享)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值