第十周 笔记

microolap  

箭头指向1的一方


一个表 由两个出发  一定是多对多联系     (有2个外键  )

 


//生成一个虚拟的视图
create view students
as
select a.stu_id id , a.stu_name name, b.subject , b.subject_eng
from t_student a
inner  join t_class b on a.cls_id = b.cls_id


//可以在视图里面查询数据
//简化了代码 会造成性能浪费,牺牲了性能
  distinct  唯一
count(*)     // 列相同的进行分组,算出有多少个

GROUP BY

COUNT(DISTINCT[column])
SUM()
AVG()
MAX()
SID_DEV()//标准方差
NOW()
CURDATE()
TIMESTAMPADIFF()      //可以计算年龄

 


select
  a.stu_id,
  a.stu_name,
  count(*),
  count(distinct b.course_id)
from t_student a
inner  join t_mark b on a.stu_id = b.stu_id
inner  join t_class c on c.cls_id = a.cls_id
where b.scroll < 60 and c.subject_eng = '会计' and c.subject = '2012'
group  by a.stu_id, a.stu_name

 

### 吴恩达机器学习课程第十笔记概览 在吴恩达老师的机器学习课程中,第十的内容主要集中在大规模机器学习方面。这一部分探讨了如何处理大数据集以及提高训练效率的方法[^3]。 #### 大规模机器学习的特点 当面对海量的数据时,传统的批梯度下降法可能变得低效甚至不可行。为了应对这个问题,在线学习方法被引入到模型训练过程之中。在线学习允许算法随着新样本的到来逐步更新参数,而不是等待整个数据集加载完毕后再做调整[^2]。 #### 随机梯度下降 (SGD) 随机梯度下降是一种用于优化神经网络权重的有效技术。相比于批量梯度下降每次迭代都需要遍历全部训练样本来计算损失函数导数的做法不同的是,SGD仅选取单一样本或少量样本作为估计依据来近似真实梯度方向,从而大大加快收敛速度并减少内存占用量。 ```python import numpy as np def stochastic_gradient_descent(X, y, theta, alpha=0.01, num_iters=1000): m = len(y) for _ in range(num_iters): indices = list(range(m)) np.random.shuffle(indices) for i in indices: xi = X[i:i+1] yi = y[i] error = hypothesis(theta, xi) - yi # Update parameters using only one training example at a time. theta -= alpha * error.T.dot(xi).T return theta ``` #### MapReduce框架下的分布式计算 对于极其庞大的数据集而言,即使采用SGD也可能难以满足实时性需求。此时可以考虑利用MapReduce这样的分布式计算平台来进行更高效的并行化操作。通过合理分配子任务给集群中的各个节点执行,并最终汇总结果完成全局同步更新,可以在较短时间内获得满意的解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值