贝叶斯个性化排序(BPR)

前言

排序推荐算法历史很悠久,早在做信息检索的各种产品中就已经在使用了,排序推荐算法大体上可以分为三类

  • 第一类排序算法类别是点对方法(Pointwise Approach),这类算法将排序问题被转化为分类、回归之类的问题,并使用现有分类、回归等方法进行实现
  • 第二类排序算法是成对方法(Pairwise Approach),在序列方法中,排序被转化为对序列分类或对序列回归。所谓的pair就是成对的排序,比如(a,b)一组表明a比b排的靠前。BPR就属于这一类。
  • 第三类排序算法是列表方法(Listwise Approach),它采用更加直接的方法对排序问题进行了处理。它在学习和预测过程中都将排序列表作为一个样本。排序的组结构被保持。

BPR

基本概念

BPR算法将任意用户u对应的物品进行标记,如果用户u在同时有物品i和j的之后点击了i,那么我们得到了一个三元组 <u,i,j> 这个三元组表示对用户u来说,i的排序要比j靠前,如果对于用户u来说我们有m组这样的反馈,那么我们就可以得到m组用户u对应的训练样本。


贝叶斯排序,听他的名字我们便知道和贝叶斯肯定有关系,我们现在需要两个假设:

1. 一是每个用户之间的偏好行为相互独立,即用户u在商品i和j之间的偏好和其他用户无关。

2. 二是同一用户对不同物品的偏序相互独立,也就是用户u在商品i和j之间的偏好和其他的商品无关。

下面我们为了描述方便使用符号>u来描述用户u的偏好,上面的<u,i,j>可以表示为:i>uj

BPR中,我们用到的类似于矩阵分解的思想,对于用户集U和物品集I对应的U*I的预测排序矩阵,我们期望得到两个分解后的用户矩阵 W ( ∣ U ∣ × k ) W(|U|×k) W(U×k)和物品矩阵 H ( ∣ I ∣ × k ) H (|I|×k) H(I×k),满足: X ‾ = W H T \overline{X} =WH^T X=WHT 这里的k和funkSVD类似,也是自己定义的,一般远远小于 ∣ U ∣ , ∣ I ∣ |U|,|I| U,I
由于BPR是基于用户维度的,所以对于任意一个用户u,对应的任意一个物品i我们期望有: x ‾ u i = w u ∙ h i = ∑ f = 1 k w u f h i f \overline{x}_{ui} = w_u \bullet h_i = \sum\limits_{f=1}^kw_{uf}h_{if} xui=wuhi=f=1kwufhif我们最终的目的是希望寻找合适的矩阵W,H,让 X ‾ \overline{X} X X X X最相似。读到这里,也许你会说,这和funkSVD之类的矩阵分解模型没有什么区别啊? 的确,现在还看不出,下面我们来看看BPR的算法优化思路,就会慢慢理解和funkSVD有什么不同了。

BPR最优化算法推导

BPR 基于最大后验估计 P ( W , H ∣ &gt; u ) P(W,H|&gt;_u) P(W,H>u)来求解模型参数 W , H W,H W,H下面的公式中, θ \theta θ表示参数 W , H W,H W,H ,     &gt; u &gt;_u >u表示用户u对应的所有商品的全序关系,我们现在的优化目标是 P ( θ ∣ &gt; u ) P(\theta|&gt;_u) P(θ>u),而这里便用到了贝叶斯公式,如下: P ( θ ∣ &gt; u ) = P ( &gt; u ∣ θ ) P ( θ ) P ( &gt; u ) P(\theta|&gt;_u) = \frac{P(&gt;_u|\theta)P(\theta)}{P(&gt;_u)} P(θ>u)=P(>u)P(>uθ)P(θ)

我们在前面已经假设了用户之间的偏好,用户对物品的偏好都是相互独立的,正因为所具有的独立性,我们才能使用贝叶斯公式进一步推导,也正因为我们已经假设了用户的排序和其他用户无关,因此,对于任意一个用户u来说, P ( &gt; u ) P(&gt;_u) P(>u)对所有的物品来说又是一样的,因此我们可以得到下面的公式 P ( θ ∣ &gt; u ) ∝ P ( &gt; u ∣ θ ) P ( θ ) P(\theta|&gt;_u) \propto P(&gt;_u|\theta)P(\theta) P(θ>u)P(>uθ)P(θ)因此我们现在的优化目标就转到了对 P ( θ ∣ &gt; u ) ∝ P ( &gt; u ∣ θ ) P ( θ ) P(\theta|&gt;_u) \propto P(&gt;_u|\theta)P(\theta) P(θ>u)P(>uθ)P(θ)

我们可以将公式 P ( θ ∣ &gt; u ) ∝ P ( &gt; u ∣ θ ) P ( θ ) P(\theta|&gt;_u) \propto P(&gt;_u|\theta)P(\theta) P(θ>u)P(>uθ)P(θ)的优化分为两部分 ,第一部分和样本数据集D有关,第二部分和样本数据集D无关。

  1. P ( &gt; u ∣ θ ) P(&gt;_u|\theta) P(>uθ)
  2. P ( θ ) P(\theta) P(θ)

首先我们先看第一部分

对于第一部分,由于我们假设每个用户之间的偏好行为相互独立,同一用户对不同物品的偏序相互独立,所以有: ∏ u ∈ U P ( &gt; u ∣ θ ) = ∏ ( u , i , j ) ∈ ( U × I × I ) P ( i &gt; u j ∣ θ ) δ ( ( u , i , j ) ∈ D ) ( 1 − P ( i &gt; u j ∣ θ ) ) δ ( ( u , j , i ) ̸ ∈ D ) \prod_{u \in U}P(&gt;_u|\theta) = \prod_{(u,i,j) \in (U \times I \times I)}P(i &gt;_u j|\theta)^{\delta((u,i,j) \in D)}(1-P(i &gt;_u j|\theta))^{\delta((u,j,i) \not\in D) } uUP(>uθ)=(u,i,j)(U×I×I)P(i>ujθ)δ((u,i,j)D)(1P(i>ujθ))δ((u,j,i)̸D)其中 δ ( b ) = { 1 i f &ThickSpace; b &ThickSpace; i s &ThickSpace; t r u e 0 e l s e \delta(b)= \begin{cases} 1&amp; {if\; b\; is \;true}\\ 0&amp; {else} \end{cases} δ(b)={10ifbistrueelse补充这里讲一下排序公式 &gt; u &gt;_u >u的完全性,反对称性和传递性

1. 完整性: ∀ i , j ∈ I : i ≠ j ⇒ i &gt; u j &ThickSpace; ∪ &ThickSpace; j &gt; u i \forall i,j \in I: i \neq j \Rightarrow i &gt;_u j\; \cup\; j&gt;_u i i,jI:i̸=ji>ujj>ui
2. 反对成性 ∀ i , j ∈ I : i &gt; u j &ThickSpace; ∩ &ThickSpace; j &gt; u i ⇒ i = j \forall i,j \in I: i &gt;_u j\; \cap\; j&gt;_u i \Rightarrow i=j i,jI:i>ujj>uii=j
3. 传递性 ∀ i , j , k ∈ I : i &gt; u j &ThickSpace; ∩ &ThickSpace; j &gt; u k ⇒ i &gt; u k \forall i,j,k \in I: i &gt;_u j\; \cap\; j&gt;_u k \Rightarrow i&gt;_uk i,j,kI:i>ujj>uki>uk

由于第一部分的样本数据集合D有关,根据上面讲到的完整性和反对称性,优化目标的第一部分可以简化为: ∏ u ∈ U P ( &gt; u ∣ θ ) = ∏ ( u , i , j ) ∈ D P ( i &gt; u j ∣ θ ) \prod_{u \in U}P(&gt;_u|\theta) = \prod_{(u,i,j) \in D}P(i &gt;_u j|\theta) uUP(>uθ)=(u,i,j)DP(i>ujθ)而对于 P ( i &gt; u j ∣ θ ) P(i&gt;uj|θ) P(i>ujθ)这个概率,我们可以使用下面这个式子来代替: P ( i &gt; u j ∣ θ ) = σ ( x ‾ u i j ( θ ) ) P(i &gt;_u j|\theta) = \sigma(\overline{x}_{uij}(\theta)) P(i>ujθ)=σ(xuij(θ))
这里的 σ ( x ) \sigma(x) σ(x)是sigmoid函数。在这里我们不一定非要用sigmoid函数,还可以使用其他的函数,这里不一一列举。

我们现在继续分解,对于式子 x ‾ u i j ( θ ) \overline{x}_{uij}(\theta) xuij(θ)我们要满足当 i &gt; u j i &gt;_u j i>uj时, x ‾ u i j ( θ ) &gt; 0 \overline{x}_{uij}(\theta) &gt; 0 xuij(θ)>0,反之,当 j &gt; u j&gt;_u j>u时, x ‾ u i j ( θ ) &lt; 0 \overline{x}_{uij}(\theta) &lt; 0 xuij(θ)<0,最简单的表示这个性质的方法就是(下面的式子我也不太明白,暂时记住就行) x ‾ u i j ( θ ) = x ‾ u i ( θ ) − x ‾ u j ( θ ) \overline{x}_{uij}(\theta) = \overline{x}_{ui}(\theta) - \overline{x}_{uj}(\theta) xuij(θ)=xui(θ)xuj(θ)
x ‾ u i ( θ ) , x ‾ u j ( θ ) \overline{x}_{ui}(\theta) , \overline{x}_{uj}(\theta) xui(θ),xuj(θ),就是我们的矩阵X¯¯¯¯对应位置的值。这里为了方便,我们不写θ,这样上式可以表示为: x ‾ u i j = x ‾ u i − x ‾ u j \overline{x}_{uij} = \overline{x}_{ui} - \overline{x}_{uj} xuij=xuixuj

最终我们可以将第一部分的优化目标转化为: ∏ u ∈ U P ( &gt; u ∣ θ ) = ∏ ( u , i , j ) ∈ D σ ( x ‾ u i − x ‾ u j ) \prod_{u \in U}P(&gt;_u|\theta) = \prod_{(u,i,j) \in D} \sigma(\overline{x}_{ui} - \overline{x}_{uj}) uUP(>uθ)=(u,i,j)Dσ(xuixuj)

接下来我们对第二部分进行优化推导

这里原作者大胆的使用了贝叶斯假设,即这个概率分布符合正态分布,且对应的均值为0,协方差矩阵是 λ θ I \lambda_{\theta}I λθI,即 P ( θ ) ∼ N ( 0 , λ θ I ) P(\theta) \sim N(0, \lambda_{\theta}I) P(θ)N(0,λθI)为什么这么假设呢,这里认为是为了方便优化,在后面左右画室,需要计算 l n P ( θ ) lnP(\theta) lnP(θ),对于上面假设的这个多维正态分布,其对数和 ∣ ∣ θ ∣ ∣ 2 ||θ||^2 θ2成正比。即: l n P ( θ ) = λ ∣ ∣ θ ∣ ∣ 2 lnP(\theta) = \lambda||\theta||^2 lnP(θ)=λθ2

最终最大对数后延估计函数 l n &ThickSpace; P ( θ ∣ &gt; u ) ∝ l n &ThickSpace; P ( &gt; u ∣ θ ) P ( θ ) = l n &ThickSpace; ∏ ( u , i , j ) ∈ D σ ( x ‾ u i − x ‾ u j ) + l n P ( θ ) = ∑ ( u , i , j ) ∈ D l n σ ( x ‾ u i − x ‾ u j ) + λ ∣ ∣ θ ∣ ∣ 2 &ThickSpace; ln\;P(\theta|&gt;_u) \propto ln\;P(&gt;_u|\theta)P(\theta) = ln\;\prod\limits_{(u,i,j) \in D} \sigma(\overline{x}_{ui} - \overline{x}_{uj}) + ln P(\theta) = \sum\limits_{(u,i,j) \in D}ln\sigma(\overline{x}_{ui} - \overline{x}_{uj}) + \lambda||\theta||^2\; lnP(θ>u)lnP(>uθ)P(θ)=ln(u,i,j)Dσ(xuixuj)+lnP(θ)=(u,i,j)Dlnσ(xuixuj)+λθ2用梯度上升法或者牛顿法等方法来优化求解模型参数。这里用梯度上升法,对θ求导,我们有: ∂ l n &ThickSpace; P ( θ ∣ &gt; u ) ∂ θ ∝ ∑ ( u , i , j ) ∈ D 1 1 + e x ‾ u i − x ‾ u j ∂ ( x ‾ u i − x ‾ u j ) ∂ θ + λ θ \frac{\partial ln\;P(\theta|&gt;_u)}{\partial \theta} \propto \sum\limits_{(u,i,j) \in D} \frac{1}{1+e^{\overline{x}_{ui} - \overline{x}_{uj}}}\frac{\partial (\overline{x}_{ui} - \overline{x}_{uj})}{\partial \theta} + \lambda \theta θlnP(θ>u)(u,i,j)D1+exuixuj1θ(xuixuj)+λθ
又由于 x ‾ u i − x ‾ u j = ∑ f = 1 k w u f h i f − ∑ f = 1 k w u f h j f \overline{x}_{ui} - \overline{x}_{uj} = \sum\limits_{f=1}^kw_{uf}h_{if} - \sum\limits_{f=1}^kw_{uf}h_{jf} xuixuj=f=1kwufhiff=1kwufhjf因此我们可以求出 ∂ ( x ‾ u i − x ‾ u j ) ∂ θ = { ( h i f − h j f ) i f &ThickSpace; θ = w u f w u f i f &ThickSpace; θ = h i f − w u f i f &ThickSpace; θ = h j f \frac{\partial (\overline{x}_{ui} - \overline{x}_{uj})}{\partial \theta} = \begin{cases} (h_{if}-h_{jf})&amp; {if\; \theta = w_{uf}}\\ w_{uf}&amp; {if\;\theta = h_{if}} \\ -w_{uf}&amp; {if\;\theta = h_{jf}}\end{cases} θ(xuixuj)=(hifhjf)wufwufifθ=wufifθ=hififθ=hjf

BPR算法流程

BPR的算法训练流程如下
输入:训练集D三元组,梯度步长α, 正则化参数λ,分解矩阵维度k。          
输出:模型参数,矩阵W,H
   1. 随机初始化矩阵W,H
   2. 迭代更新模型参数: w u f = w u f + α ( ∑ ( u , i , j ) ∈ D 1 1 + e x ‾ u i − x ‾ u j ( h i f − h j f ) + λ w u f ) w_{uf} =w_{uf} + \alpha(\sum\limits_{(u,i,j) \in D} \frac{1}{1+e^{\overline{x}_{ui} - \overline{x}_{uj}}}(h_{if}-h_{jf}) + \lambda w_{uf}) wuf=wuf+α((u,i,j)D1+exuixuj1(hifhjf)+λwuf) h i f = h i f + α ( ∑ ( u , i , j ) ∈ D 1 1 + e x ‾ u i − x ‾ u j w u f + λ h i f ) h_{if} =h_{if} + \alpha(\sum\limits_{(u,i,j) \in D} \frac{1}{1+e^{\overline{x}_{ui} - \overline{x}_{uj}}}w_{uf} + \lambda h_{if}) hif=hif+α((u,i,j)D1+exuixuj1wuf+λhif) h j f = h j f + α ( ∑ ( u , i , j ) ∈ D 1 1 + e x ‾ u i − x ‾ u j ( − w u f ) + λ h j f ) h_{jf} =h_{jf} + \alpha(\sum\limits_{(u,i,j) \in D} \frac{1}{1+e^{\overline{x}_{ui} - \overline{x}_{uj}}}(-w_{uf}) + \lambda h_{jf}) hjf=hjf+α((u,i,j)D1+exuixuj1(wuf)+λhjf)
   3. 如果W,H收敛,则算法结束,输出W,H,否则回到步骤2.

当我们拿到W,H后,就可以计算出每一个用户u对应的任意一个商品的排序分: x ‾ u i = w u ∙ h i \overline{x}_{ui} = w_u \bullet h_i xui=wuhi,最终选择排序分最高的若干商品输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值