自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

原创 git镜像安装

打开 [git官网]Git,下载git对应操作系统的版本。官网下载太慢,我们可以使用淘宝镜像下载:CNPM Binaries Mirror

2022-05-25 10:34:11 813 1

原创 集群安装Pytorch

1.首先安装anconda 选择Linux版本的anconda,下载在本地,然后在集群上安装,安装命令bash 下载文件名称(Anaconda3-2021.05-Linux-x86_64.sh) 2.创建环境 conda create -n pytorch_gpu python=3.83.进入当前创建环境 conda activate pytorch_gpu4.进入pytorch官网Start Locally | PyTorch配置相应的环境...

2021-09-26 11:23:07 758

原创 RuntimeError: Error(s) in loading state_dict for Retinanet:

在下载目标检测RetinaNet网络模型时,在不采用原始的resnet50主干网络时,采用resnet101或其它主干时,如果在与运行predict.py出现RuntimeError: Error(s) in loading state_dict for Retinanet:是因为加载的权重与网络不相符。需要以新下载的权重经过训练得到的新权重来做预测...

2021-09-23 15:04:39 1786

原创 全局平均池化和平均池化

全局平均池化(global-average-pooling)顾名思义就是整个特征图求一个平均值,把张量从WxHxN变到1x1xN。平均池化(average-pooling)就是在特征图上从给定的区域中求平均值,变化后的特征图大小与池化区域大小选取有关。...

2021-09-04 16:18:31 5291

原创 阅读Feedback-driven loss function for small object detection

对于物体检测,损失函数一般由三部分组成,分类损失、置信度损失和位置损失,分类损失和置信度损失与物体的大小无关,所以重点是位置损失。Yolov1中位置损失的形式如公式(1)所示:Yolov3试图通过引入一个比例敏感的增益系数来解决上述问题,并且位置损失函数已修正为公式(2)所示的以下形式:反馈驱动损耗函数设计为公式(3):采用分段函数对于大于阈值w的采用2-w,小于阈值w采用公式(6)。这样设计可以很大程度上增加小物体损失所占的比例。...

2021-08-19 15:39:05 725

原创 影响神经网络训练速度的因素

一、GPU和CPU CPU:中央处理器(英文Central Processing Unit)是一台计算机的运算核心和控制核心。CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。其功能主要是解释计算机指令以及处理计算机软件中的数据。 GPU:英文全称Graphic Processing Unit,中文翻译为“图形处理器”。一个专门的图形核心处理器。GPU是显示卡的“大脑”,决定了该显卡的档次和大部分性能,同时也是2D显示卡和3D显示卡的区别依据。 CPU需要很强的通用...

2021-08-07 15:24:25 4404

原创 (Efficientdet)trainval_percent和train_percent的意义

trainval_percent代表交叉验证集占总图片的比例train_percent是训练集占交叉验证集的比例(Efficientdet)表示测试数据占总数据的0.1,训练数据占总数的0.9。

2021-08-05 14:52:52 1062 1

原创 Concat和Add融合方式

Concat融合方式是在特征图的通道进行拼接,Add是在特征图像素之间进行相加操作。如ResNet,FPN等结构采用的add来融合特征,而DenseNet等则采用concat来融合特征。Add代码Concat代码

2021-08-05 14:36:19 1927

原创 BiFPN

FPN特征提取BiFPN加强特征提取BiFPN是在FPN的基础上对其进行改进,对原始的FPN模块又添加了添加上下文信息的边,并对每个边乘以一个相应的权重。代码实现获得P3_in、P4_in、P5_in、P6_in、P7_in进行特征融合进行前向传播...

2021-07-06 10:42:30 31801 14

原创 MBConv模块的注意力机制

注意力机制模块主要是用来让网络对重要的部分施加更多的关注。下图是MBConv模块。首先进行1x1Conv进行升维操作,在进行深度可分离卷积,在进行添加注意力机制,最后通过一个1x1Conv进行降维操作,代码实现如下:该注意力机制首先进行最大池化,再进行两次1x1Conv,在进行swish函数(0-1),最后乘上原特征图。...

2021-07-06 09:55:07 12937 3

原创 扩张卷积(Dilated Convolution)

扩张卷积也被称为空洞卷积或者膨胀卷积,在原始的卷积核上插入零值,是感受野增加(reception field)。扩张卷积参数: dilation rate,指的是卷积核的点的间隔数量,比如常规的卷积操作dilatation rate为1。下图,图(a)d=1 , 图(b)d=2 , 图(c)d=4。扩张卷积操作还是很好理解的,上图中(a)是基础的卷积核,扩张卷积就是在这个基础卷积核加入间隔,上图(b)对应3 × 3 的dilation rate=2的卷积,但是间隔为1,也就是相当于对应7 × 7...

2021-07-05 16:06:42 2030

原创 卷积与反卷积

卷积卷积过程如下图卷积实现算式如下: 原图矩阵4X4 卷积核3X3反卷积...

2021-07-05 15:32:56 130

原创 runtimeerror: found no nvidia driver on your system. please check that you have an nvidia gpu

这是由于电脑没有GPU所以报错了需要安装CPU版本的pytorch

2021-07-04 16:33:43 28477 8

原创 EfficientNetV2

Backbone:EfficientNetV2采用MBConv与Fused-MBConv混合使用来提高网络的训练速度。经过多次实验发现将1-3模块替换为Fused-MBConv效果最好。训练时改变输入图像的大小:在训练时不同大小的图片训练速度和参数大小是不一样的,所以该网络采用大小不同的图片进行训练,可以进一步提高网络的训练速度,并且减少参数量实验结果:...

2021-07-04 10:18:55 685

原创 YOLOV4 SPP模块

SPP模块首要作用是用来解决输入图像尺寸不统一的问题,SPP中不同大小特征的融合,有利于待检测图像中目标大小差异较大的情况,尤其是对于yolov3一般针对的复杂多目标图像。代码实现:

2021-07-04 10:00:48 4397

原创 YOLOV4 PANet模块

第一个改进:为了提高低层信息的利用率,加快低层信息的传播效率,提出了Bottom-up Path Augmentation;第二个改进:通常FPN在多层进行选anchors时,根据anchors的大小,将其分配到对应的层上进行分层选取。这样做很高效,但同时也不能充分利用信息了,提出了Adaptive Feature Pooling。第三个改进:为了提高mask的生成质量,作者将卷积-上采样和全连接层进行融合,提出了Fully-connected Fusionda代码实现如下结构图如下简述

2021-07-04 09:51:11 1691

原创 Pytorch 安装

不需要事先安装python。一定要在64位操作系统安装,因为32位系统不支持PyTorch。1.1.安装Anaconda:Anaconda3-5.2.0-Windows-x86_64.exe打开开始菜单中的“Anaconda3 (64-bit)”->“Anaconda Prompt”,以下所有命令都在其中执行。1.2.取消现有镜像地址:conda config --remove-key channels1.3.设置清华镜像地址:conda config --add channels h

2021-07-04 09:18:46 574

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除