全局平均池化和平均池化

本文详细探讨了全局平均池化(Global Average Pooling)和普通平均池化在神经网络中的作用和差异。全局平均池化将整个特征图压缩为单一输出,常用于卷积神经网络的分类任务,以减少参数并保持特征信息。而平均池化通过在特征图上滑动窗口取平均值,输出尺寸依赖于池化窗口大小,可用于下采样和降低计算复杂度。这两种技术在图像识别和计算机视觉领域有广泛应用。
摘要由CSDN通过智能技术生成

全局平均池化(global-average-pooling)顾名思义就是整个特征图求一个平均值,把张量从WxHxN变到1x1xN。

平均池化(average-pooling)就是在特征图上从给定的区域中求平均值,变化后的特征图大小与池化区域大小选取有关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值