阅读Feedback-driven loss function for small object detection

        对于物体检测,损失函数一般由三部分组成,分类损失、置信度损失和位置损失,分类损失和置信度损失与物体的大小无关,所以重点是位置损失。

 Yolov1中位置损失的形式如公式(1)所示:

 Yolov3试图通过引入一个比例敏感的增益系数来解决上述问题,并且位置损失函数已修正为公式(2)所示的以下形式:

 反馈驱动损耗函数设计为公式(3): 

 采用分段函数对于大于阈值w的采用2-w,小于阈值w采用公式(6)。这样设计可以很大程度上增加小物体损失所占的比例。

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值