对于物体检测,损失函数一般由三部分组成,分类损失、置信度损失和位置损失,分类损失和置信度损失与物体的大小无关,所以重点是位置损失。
Yolov1中位置损失的形式如公式(1)所示:
Yolov3试图通过引入一个比例敏感的增益系数来解决上述问题,并且位置损失函数已修正为公式(2)所示的以下形式:
反馈驱动损耗函数设计为公式(3):
采用分段函数对于大于阈值w的采用2-w,小于阈值w采用公式(6)。这样设计可以很大程度上增加小物体损失所占的比例。
对于物体检测,损失函数一般由三部分组成,分类损失、置信度损失和位置损失,分类损失和置信度损失与物体的大小无关,所以重点是位置损失。
Yolov1中位置损失的形式如公式(1)所示:
Yolov3试图通过引入一个比例敏感的增益系数来解决上述问题,并且位置损失函数已修正为公式(2)所示的以下形式:
反馈驱动损耗函数设计为公式(3):
采用分段函数对于大于阈值w的采用2-w,小于阈值w采用公式(6)。这样设计可以很大程度上增加小物体损失所占的比例。