(ACL2019)Open-DomainTargeted Sentiment Analysis via Span-Based Extraction and Classification

open-domain targeted任务主要分两部分,第一步是把句子中的target检测出来,第二步是对target进行情感分类。

文章提出了一种基于新的数据标注方式的方法,解决了传统tag标注的搜索空间大且同一target下的不同单词可能被归入不同情感标签的缺点,以bert为基础模型进行了实验。

论文提出的Span-Based标注方法如下:

下图表示的是论文整个模型的工作过程,提取出targets之后,通过attention加权送入神经网络输出分类结果。

论文想要同时提取出多个target,为了避免多个targets之间存在word上的overlap,作者采用了一种启发式编码的算法提取multi-targets。首先提取分数前K大的start和end位置,之后尝试其所有合适的组合,分数总和大于一个阈值的就计算这个备选target的潜在分数ul(减去target长度因为target一般都是由少量word组成的),并纳入备胎集合。每次从备胎中选出潜在分数最大的target作为提取出的target,之后删去备胎集合中有word overlap的target。

情感分析是一种通过计算机程序对文本中的情绪进行分析的技术。方面的使用生成对比学习方法。生成对比学习是一种通过比较两个不同视角的数据来提高模型性能的方法。在这种情感分析中,我们可以使用生成方法来自动提取文本中的情感方面,并结合对比学习方法来提高模型的性能。通过这种方法,我们可以更准确地识别文本中不同方面的情感,并且能够更好地区分出正面和负面情绪。 在这个过程中,我们首先使用生成模型来自动提取文本中的情感方面,然后结合对比学习方法来进行训练,以提高模型对情感方面的识别能力。这种方法可以帮助我们更准确地理解文本中的情感内容,并且能够更好地适应不同类型文本的情感分析任务。 此外,我们还可以使用这种方法来进行情感方面的生成,并结合对比学习方法来训练模型,使得生成的情感方面能够更接近真实的情感内容。通过这种方法,我们可以生成更加准确和自然的情感内容,并且能够更好地适应不同类型的情感生成任务。 综上所述,generative aspect-based sentiment analysis with contrastive learning and exp的方法可以帮助我们更准确地识别和生成文本中的情感内容,并且能够更好地适应不同类型文本的情感分析和生成任务。这种方法在自然语言处理领域具有广阔的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值