看文献不会虚度时间
The intuition behind this work is that sentiment expressed towards an entity, targeted sentiment, may be viewed as a span of sentiment expressed across the entity. 灵感在于,对于某个目标实体的情感表达会跨越对实体的感情表达。
作者举例说明情感分析是个多面问题——很多表达不能直接从文本上分析,比如我支持的球队输了,我会说“真是高兴,我喜欢的球队居然会输“,我是真的高兴吗?
传统的情感分析主要有三个主题:1)经验;2)态度;3)随意目标。以往主要关心第二个问题,挖掘整体的感情极性就;也有2,3结合分析,预测目标集合的感情极性(话题建模结合)。这篇论文在后者的基础上,研究命名实体的探测和感情表达。
问题描述:给定文本序列{w1,,wn},得到实体概率序列{l1,,ln}和情感值序列{s1,,sn},最后联合学习entity+sentiment序列{y1,,yn},方法为简单的线性随机场模型。p(l, s|w). 模型三个部分,PIPE,实体和情感;JOINT,联合学习;COLL,标签学习。
总结:这篇论文是利用CRF模型进行小样本(情感词表)的实体探测和情感分析(实体)的工作,有收获,没想法。