Gensim 库的使用之 Word2Vec 模型案例演示
要见识一下 Word2Vec 模型可以做什么,那么最好的方法就是直接下载一个预训练模型,然后尝试用一下看看效果。
我们在这里获取一个在 Google News 数据集上训练完成的 Word2Vec 模型,覆盖了大约 300 万的词汇和短语。
这样一个模型需要几个小时来进行训练,但是既然 Google 已经将其公开,那直接花几分钟下载下来就能用了。
!!!注意:该模型大小约 2GB,而且需要科学的方法才能下载!实在无法解决网络问题的朋友,可以用我提供的本站连接下载,然后解压到对应位置!!!
目录:
模型下载地址:
~~由于文件太大,分了10个部分~~
word2vec-google-news-300.zip.001
word2vec-google-news-300.zip.002
word2vec-google-news-300.zip.003
word2vec-google-news-300.zip.004
word2vec-google-news-300.zip.005
word2vec-google-news-300.zip.006
word2vec-google-news-300.zip.007
word2vec-google-news-300.zip.008
word2vec-google-news-300.zip.009
word2vec-google-news-300.zip.010
不想在本地运行的朋友,也可以选择在线尝试该模型的效果:
http://radimrehurek.com/2014/02/word2vec-tutorial/#app
不过,如果不是科学的连接方式,不确保可以登陆该网页~~
该模型是利用了整个 Google News 大约 1000 亿个词的语料训练而成!
一、下载预训练模型 word2vec-google-news-300
import gensim.downloader as api
wv = api.load