Python Pandas 常用统计数据方法汇总(求和,计数,均值,中位数,分位数,最大/最小,方差,标准差等)

准备数据:

import pandas as pd
# 假设有 5 个人,分别参加了 4 门课程,获得了对应的分数
# 同时这个 5 个人分别负责的项目个数 在 'Project_num' 列中显示
data = {
   'name' : pd.Series(['Alice', 'Bob', 'Cathy', 'Dany', 'Ella', 'Ford', 'Gary', 'Ham', 'Ico', 'Jack']),
        'Math_A' : pd.Series([1.1, 2.2, 3.3, 4.4, 5, 3.2, 2.4, 1.5, 4.3, 4.5]),
        'English_A' : pd.Series([3, 2.6, 2, 1.7, 3, 3.3, 4.4, 5, 3.2, 2.4]),
        'Math_B' : pd.Series([1.7, 2.5, 3.6, 2.4, 5, 2.2, 3.3, 4.4, 1.5, 4.3]),
        'English_B' : pd.Series([5, 2.6, 2.4, 1.3, 3, 3.6, 2.4, 5, 2.2, 3.1]),
        'Project_num' : pd.Series([2, 3, 0, 1, 7, 2, 1, 5, 3, 4]),
        'Sex' : pd
要在Pythonpandas中取中位数,可以使用DataFrame的median()函数。具体操作如下: 1. 首先,导入pandas库和numpy库(如果还没有导入的话)。 2. 创建一个DataFrame对象,可以使用pandas的DataFrame()函数,并传入你的数据和列标签。 3. 调用DataFrame对象的median()函数,这将返回每列的中位数。你可以选择打印整个结果,或者指定列来打印特定列的中位数。 例如,假设你的数据框名为df,你可以使用以下代码获取中位数: import pandas as pd import numpy as np # 创建DataFrame df = pd.DataFrame({ 'Math_A': [10, 10, 10, 10, 10], 'English_A': [10, 10, 10, 10, 10], 'Math_B': [10, 10, 10, 10, 10], 'English_B': [10, 10, 10, 10, 10], 'Project_num': [10, 10, 10, 10, 10], 'Sex': [10, 10, 10, 10, 10] }) # 取中位数 median_values = df.median() print(median_values) 输出结果将会是每列的中位数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Python Pandas 常用统计数据方法汇总求和计数均值中位数分位数最大/最小方差标准差等)](https://blog.csdn.net/qq_42067550/article/details/106260512)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [Python pandaspandas常用统计方法求和sum,均值mean,最大值max,中位数median,标准差std](https://blog.csdn.net/houyanhua1/article/details/87858575)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值