GAN在医学图像综述——Generative adversarial network in medical imaging: A review

本文综述了GAN在医学图像领域的应用,重点在图像合成、重建和分割任务,尤其是在跨模态图像合成方面的进展。GAN解决了数据缺乏和隐私问题,常用于图像到图像转换,有助于改善临床诊断和研究。
摘要由CSDN通过智能技术生成


   这篇文章发表于顶刊Medical Imaging Analysis 2019上,文章细数了GAN应用于医学图像的七大领域——重建(图像去噪)、合成、分割、分类、检测、配准和其他工作,并介绍了包括医学图像数据集、度量指标等内容,并对未来工作做出展望。由于笔者研究方向之故,本博客暂时只关注重建、合成部分的应用。关于该论文中所有列出的文章,均可在 GitHub链接中找到。

介绍

  本文统计的截止时间是2019年1月1日之前,统计的论文数据图表如下所示:
在这里插入图片描述
  图(a)展示了统计的论文中各应用所占的比例,可以看到合成应用占了46%,合成、重建、分割任务占了绝大多数。图(b)展示了统计的论文中所处理的图像模态比例,可看到MR、CT遥遥领先,PET占据的非常少。图(c)展示了应用论文增长的数量,可以看出GAN应用于医学图像的趋势越来越强烈。
  自2017年起,GAN在医学图像领域的应用大幅上升。其中,图像合成,特别是跨模态合成已经成为了GAN最重要的应用。MR则是最常用的图像。
  由于图像到图像转换框架的

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值