Generative adversarial network in medical imaging: A review
这篇文章发表于顶刊Medical Imaging Analysis 2019上,文章细数了GAN应用于医学图像的七大领域——重建(图像去噪)、合成、分割、分类、检测、配准和其他工作,并介绍了包括医学图像数据集、度量指标等内容,并对未来工作做出展望。由于笔者研究方向之故,本博客暂时只关注重建、合成部分的应用。关于该论文中所有列出的文章,均可在 GitHub链接中找到。
介绍
本文统计的截止时间是2019年1月1日之前,统计的论文数据图表如下所示:
图(a)展示了统计的论文中各应用所占的比例,可以看到合成应用占了46%,合成、重建、分割任务占了绝大多数。图(b)展示了统计的论文中所处理的图像模态比例,可看到MR、CT遥遥领先,PET占据的非常少。图(c)展示了应用论文增长的数量,可以看出GAN应用于医学图像的趋势越来越强烈。
自2017年起,GAN在医学图像领域的应用大幅上升。其中,图像合成,特别是跨模态合成已经成为了GAN最重要的应用。MR则是最常用的图像。
由于图像到图像转换框架的