2.20  统计学习

一、1、导论

统计学习分为监督学习和非监督学习(先学监督学习)

模型(假设空间):决策函数、条件概率分布

策略:0-1损失函数、平方损失函数、绝对值损失函数、对数损失函数、经验风险最小化、结构风险最小化(正则项)

算法

训练集(用来训练)

验证集用来选出最好的一个拟合次数(因为训练模型在一遍又一遍的更新拟合,越来越符合训练集,但是可能出现过拟合的问题,所以需要确定一个最好的拟合次数)

最后再将选出来的模型在测试集上跑一个分数作为模型最终的得分

交叉验证:数据量太小的时候,选择这种方式进行随机选取组成训练集与验证集

经验误差:在训练集上的平均误差

泛化误差:不论是在训练中还是在实际应用中,的平均误差

生成模型与判别模型

生成方法:P(Y|X)=p(X,Y)/p(X)

判别方法:f(X)或p(Y|X)

生成模型一般好于判别模型,但是过程也会比较复杂

一、2、极大似然估计

Θ是未知的,但是可以求出似然函数的表达式。比如在题已知的条件下,抛出硬币的结果是在1 0 0 1 1 的概率为L(θ) = θ3 (1-θ)2

在求出表达式之后,我们需要让表达式的值最大,也就是达到我们要的抛硬币的结果的最大概率,此时求出的Θ为最可能的

不直接求L(Θ),而是求ln(L(Θ)),是因为L(Θ)是很多个小数的乘积,结果很小就会出现下溢出,所以使用ln

一、3、梯度下降法

选取一个初始点,求导,倒数大于零就减小x,导数小于零就增加x

随着递推的进行,f(x)’ 不断地减小,最终足够小,达到停止条件就可以停止。

二、感知机(最基础的算法,后面的算法都是在这个的基础上进行优化的)

1、导论

在一个线性可分模型中,确定一个超平面,将数据进行划分

原则:1、一个超平面不分错一个点,就是好的超平面

2、模型要尽可能的找到好的超平面

3、如果没有好的超平面,就在差的超平面中找到较好的直线

4、判断一个超平面有多差:分错的点到超平面的距离的求和

分错的点,计算到超平面的距离,使用几何间距,不使用函数间距。

因为函数间距中,如果同时缩小w 与 b,就会使函数间距变小,但实际上超平面并没有变化,几何间距因为分母的存在,相当于给间距加上了一个量纲,避免了这个问题,之后的学习中都主要使用几何间距不是函数间距

因为感知机的误分类驱动的,进行计算带入的点也都是被错误分类的点。这里使用函数间距就可以满足条件,使用几何间距只会无用的增加计算量。

使用方法就是不断的使用误分类的点进行梯度下降法

感知机只能进行线性分类,也就是二分类,如果使用多个感知机可以进行多分类

二、感知机2、感知机的对偶形式

对偶形式:就是目的是一样的,但是实现的方式是不同的

当一个点始终是误分类点,那就需要循环的对其进行梯度下降。当一个点进行n次梯度下降之后,这一个点对w、b的影响就是图中所示

1、使用这种对偶形式,初始值设置必须要α=0,因为最开始还没有对误分类点进行迭代

感知机中,初始值可以设置为任意值

2、这种方式的好处是:在判断一个点是不是误分类点时的判断公式中有Xj Xi,可以实现进行X * X的矩阵运算,用的时候直接读取,减少运行时间。

3、感知机的原始形式中,每次迭代都需要进行yi * xi + w,这种对偶形式的迭代只需要在α的基础上进行加法

二、感知机3、感知机的收敛性

二、感知机4、感知机的代码

Tqdm包是一个显示进度的包

#coding=utf-8
#Author:Dodo
#Date:2018-11-15
#Email:lvtengchao@pku.edu.cn

'''
数据集:Mnist
训练集数量:60000
测试集数量:10000
------------------------------
运行结果:
正确率:81.72%(二分类)
运行时长:78.6s
'''

import numpy as np
import time
from tqdm import tqdm

def loadData(fileName):
    '''
    加载Mnist数据集
    :param fileName:要加载的数据集路径
    :return: list形式的数据集及标记
    '''
    print('start to read data')
    # 存放数据及标记的list
    dataArr = []; labelArr = []
    # 打开文件
    fr = open(fileName, 'r')
    # 将文件按行读取
    for line in tqdm(fr.readlines()):
        # 对每一行数据按切割福','进行切割,返回字段列表
        curLine = line.strip().split(',')

        # Mnsit有0-9是个标记,由于是二分类任务,所以将>=5的作为1,<5为-1
        if int(curLine[0]) >= 5:
            labelArr.append(1)
        else:
            labelArr.append(-1)
        #存放标记
        #[int(num) for num in curLine[1:]] -> 遍历每一行中除了以第一哥元素(标记)外将所有元素转换成int类型
        #[int(num)/255 for num in curLine[1:]] -> 将所有数据除255归一化(非必须步骤,可以不归一化)
        dataArr.append([int(num)/255 for num in curLine[1:]])

    #返回data和label
    return dataArr, labelArr

def perceptron(dataArr, labelArr, iter=50):
    '''
    感知器训练过程
    :param dataArr:训练集的数据 (list)
    :param labelArr: 训练集的标签(list)
    :param iter: 迭代次数,默认50
    :return: 训练好的w和b
    '''
    print('start to trans')
    #将数据转换成矩阵形式(在机器学习中因为通常都是向量的运算,转换称矩阵形式方便运算)
    #转换后的数据中每一个样本的向量都是横向的
    dataMat = np.mat(dataArr)
    #将标签转换成矩阵,之后转置(.T为转置)。
    #转置是因为在运算中需要单独取label中的某一个元素,如果是1xN的矩阵的话,无法用label[i]的方式读取
    #对于只有1xN的label可以不转换成矩阵,直接label[i]即可,这里转换是为了格式上的统一
    labelMat = np.mat(labelArr).T
    #获取数据矩阵的大小,为m*n
    m, n = np.shape(dataMat)
    #创建初始权重w,初始值全为0。
    #np.shape(dataMat)的返回值为m,n -> np.shape(dataMat)[1])的值即为n,与
    #样本长度保持一致
    w = np.zeros((1, np.shape(dataMat)[1]))
    #初始化偏置b为0
    b = 0
    #初始化步长,也就是梯度下降过程中的n,控制梯度下降速率
    h = 0.0001

    #进行iter次迭代计算
    for k in range(iter):
        #对于每一个样本进行梯度下降
        #李航书中在2.3.1开头部分使用的梯度下降,是全部样本都算一遍以后,统一
        #进行一次梯度下降
        #在2.3.1的后半部分可以看到(例如公式2.6 2.7),求和符号没有了,此时用
        #的是随机梯度下降,即计算一个样本就针对该样本进行一次梯度下降。
        #两者的差异各有千秋,但较为常用的是随机梯度下降。
        for i in range(m):
            #获取当前样本的向量
            xi = dataMat[i]
            #获取当前样本所对应的标签
            yi = labelMat[i]
            #判断是否是误分类样本
            #误分类样本特诊为: -yi(w*xi+b)>=0,详细可参考书中2.2.2小节
            #在书的公式中写的是>0,实际上如果=0,说明改点在超平面上,也是不正确的
            if -1 * yi * (w * xi.T + b) >= 0:
                #对于误分类样本,进行梯度下降,更新w和b
                w = w + h *  yi * xi
                b = b + h * yi
        #打印训练进度
        print('Round %d:%d training' % (k, iter))

    #返回训练完的w、b
    return w, b


def model_test(dataArr, labelArr, w, b):
    '''
    测试准确率
    :param dataArr:测试集
    :param labelArr: 测试集标签
    :param w: 训练获得的权重w
    :param b: 训练获得的偏置b
    :return: 正确率
    '''
    print('start to test')
    #将数据集转换为矩阵形式方便运算
    dataMat = np.mat(dataArr)
    #将label转换为矩阵并转置,详细信息参考上文perceptron中
    #对于这部分的解说
    labelMat = np.mat(labelArr).T

    #获取测试数据集矩阵的大小
    m, n = np.shape(dataMat)
    #错误样本数计数
    errorCnt = 0
    #遍历所有测试样本
    for i in range(m):
        #获得单个样本向量
        xi = dataMat[i]
        #获得该样本标记
        yi = labelMat[i]
        #获得运算结果
        result = -1 * yi * (w * xi.T + b)
        #如果-yi(w*xi+b)>=0,说明该样本被误分类,错误样本数加一
        if result >= 0: errorCnt += 1
    #正确率 = 1 - (样本分类错误数 / 样本总数)
    accruRate = 1 - (errorCnt / m)
    #返回正确率
    return accruRate

if __name__ == '__main__':
    #获取当前时间
    #在文末同样获取当前时间,两时间差即为程序运行时间
    start = time.time()

    #获取训练集及标签
    trainData, trainLabel = loadData('../Mnist/mnist_train.csv')
    #获取测试集及标签
    testData, testLabel = loadData('../Mnist/mnist_test.csv')

    #训练获得权重
    w, b = perceptron(trainData, trainLabel, iter = 30)
    #进行测试,获得正确率
    accruRate = model_test(testData, testLabel, w, b)

    #获取当前时间,作为结束时间
    end = time.time()
    #显示正确率
    print('accuracy rate is:', accruRate)
    #显示用时时长
    print('time span:', end - start)

没眼看的课后习题

import numpy as np

#读入数据
dataArr = [[3,3],[4,3],[1,1]]
labelArr = [1,1,-1]
#设置初值
b = 0
data = np.mat(dataArr)
label = np.mat(labelArr).T
#将label值转成纵向
w = np.zeros(data.shape[1])
h = 1#步长

i = 0
while i <3:
    if -1 * label[i] * (w * data[i].T + b) >= 0:
       #data[i]进行转置,不然无法相乘
        w = w + h * label[i] * data[i]
        b = b + h * label[i]
        i = 0
    else:
        i+=1

print(w,b)

import numpy as np
import matplotlib.pyplot as plt

class MyPerceptron:
    def __init__(self):
        self.w=None  # 参数w的个数与x的特征数量对应,初始并不知道x的特征个数,故赋值None
        self.b=0
        self.l_rate=1  # 学习率 = 1

    def fit(self,X_train,y_train):
        #用样本点的特征数更新初始w,如x1=(3,3)T,有两个特征,则self.w=[0,0]
        self.w=np.zeros(X_train.shape[1])
        i=0
        while i<X_train.shape[0]:
            X=X_train[i]
            y=y_train[i]
            # 如果y*(wx+b)≤0 说明是误判点,更新w,b
            if y*(np.dot(self.w, X) + self.b) <= 0:
                #np.dot是向量的点集
                self.w = self.w + self.l_rate * np.dot(y, X)
                self.b = self.b + self.l_rate * y
                i=0 #如果是误判点,从头进行检测
            else:
                i+=1

def draw(X,w,b):
    #生产分离超平面上的两点
    X_new=np.array([[0], [6]])
    y_predict=-b-(w[0]*X_new)/w[1]
    #绘制训练数据集的散点图
    plt.plot(X[:2,0],X[:2,1],"g*",label="1")
    plt.plot(X[2:,0], X[2:,0], "rx",label="-1")
    #绘制分离超平面
    plt.plot(X_new,y_predict,"b-")
    #设置两坐标轴起止值
    plt.axis([0,6,0,6])
    #设置坐标轴标签
    plt.xlabel('x1')
    plt.ylabel('x2')
    #显示图例
    plt.legend()
    #显示图像
    plt.show()

def main():
    # 构造训练数据集
    X_train=np.array([[3,3],[4,3],[1,1]])
    y_train=np.array([1,1,-1])
    # 构建感知机对象,对数据集继续训练
    perceptron=MyPerceptron()
    perceptron.fit(X_train,y_train)
    print(perceptron.w)
    print(perceptron.b)
    # 结果图像绘制
    draw(X_train,perceptron.w,perceptron.b)

if __name__=="__main__":
    main()

from sklearn.linear_model import Perceptron
import numpy as np

X_train = np.array([[3, 3], [4, 3], [1, 1]])
y = np.array([1, 1, -1])

perceptron=Perceptron()
perceptron.fit(X_train,y)
print("w:",perceptron.coef_,"\n","b:",perceptron.intercept_,"\n","n_iter:",perceptron.n_iter_)

res=perceptron.score(X_train,y)
print("correct rate:{:.0%}".format(res))

仅用于个人学习

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值