机器学习中的函数间隔和几何间隔

一、函数间隔

函数间隔
一般来说, 一个点距离分离超平面的远近可以表示分类预测的确信程度。在超平面 w ⋅ x + b = 0 w\cdot x+b=0 wx+b=0 确定的情况下, ∣ w ⋅ x + b ∣ |w\cdot x+b| wx+b能够相对地表示点距离超平面的远近。 w ⋅ x + b w\cdot x+b wx+b 的符号与类标记 y y y 的符号是否一致能够表示分类是否正确。所以可用 y ( w ⋅ x + b ) y(w\cdot x+b) y(wx+b)来表示分类的正确性及确信度,这就是函数间隔(functional margin)的概念。
定义
对于给定的训练数据集 T T T 和超平面 ( w , b ) (w,b) (w,b),定义超平面 ( w , b ) (w,b) (w,b) 关于样本点 ( x i , y i ) (x_i,y_i) (xi,yi)的函数间隔为:
γ i ^ = y i ( w ⋅ x i + b ) \hat{\gamma_i}=y_i(w\cdot x_i+b)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值