一、函数间隔
-
函数间隔
-
一般来说, 一个点距离分离超平面的远近可以表示分类预测的确信程度。在超平面
w ⋅ x + b = 0 w\cdot x+b=0 w⋅x+b=0 确定的情况下,
∣ w ⋅ x + b ∣ |w\cdot x+b| ∣w⋅x+b∣能够相对地表示点距离超平面的远近。
w ⋅ x + b w\cdot x+b w⋅x+b 的符号与类标记
y y y 的符号是否一致能够表示分类是否正确。所以可用
y ( w ⋅ x + b ) y(w\cdot x+b) y(w⋅x+b)来表示分类的正确性及确信度,这就是函数间隔(functional margin)的概念。
定义 -
对于给定的训练数据集
T T T 和超平面
( w , b ) (w,b) (w,b),定义超平面
( w , b ) (w,b) (w,b) 关于样本点
( x i , y i ) (x_i,y_i) (xi,yi)的函数间隔为:
γ i ^ = y i ( w ⋅ x i + b ) \hat{\gamma_i}=y_i(w\cdot x_i+b)