[洛谷P3698]小Q的棋盘

98 篇文章 0 订阅
89 篇文章 0 订阅

题目

传送门 to luogu

思路

思路一:动态规划

好像是个树形 d p \tt{dp} dp ,甚至挺板?

f ( x , y , 0 / 1 ) f(x,y,0/1) f(x,y,0/1) 表示从 x x x 点开始往子树走 y y y 步,是否 ( 0 / 1 ) (0/1) (0/1) 回到 x x x ,最多经过的节点数量。

大可以 把这玩意儿当做背包

  1. 不回来,最后是走到了子树 u u u 里面。 f ( x , y , 0 ) = f ( u , v , 0 ) + f ( x , y − v − 1 , 1 ) f(x,y,0)=f(u,v,0)+f(x,y-v-1,1) f(x,y,0)=f(u,v,0)+f(x,yv1,1)
  2. 不回来,中途在子树 u u u 里面转了一圈。 f ( x , y , 0 ) = f ( u , v , 1 ) + f ( x , y − v − 2 , 0 ) f(x,y,0)=f(u,v,1)+f(x,y-v-2,0) f(x,y,0)=f(u,v,1)+f(x,yv2,0)
  3. 回来。 f ( x , y , 1 ) = f ( u , v , 1 ) + f ( x , y − v − 2 , 1 ) f(x,y,1)=f(u,v,1)+f(x,y-v-2,1) f(x,y,1)=f(u,v,1)+f(x,yv2,1)
代码一:动态规划
#include <cstdio>
#include <iostream>
#include <vector>
using namespace std;

const int MaxN = 100;
int n, movement; vector<int> g[MaxN];

int dp[MaxN][MaxN+1][2];
// dp[0]: not come back
void getDp(int x,int pre){
	for(int j=0; j<=n; ++j)
		dp[x][j][0] = dp[x][j][1] = 1;
	for(int i=0,len=g[x].size(); i<len; ++i){
		if(g[x][i] == pre)
			continue;
		getDp(g[x][i],x);
		for(int j=movement; j; --j)
			for(int k=0; k<j; ++k){
				dp[x][j][0] = max(dp[x][j][0],dp[x][j-k-1][1]+dp[g[x][i]][k][0]);
				if(j-k-2 >= 0){
					dp[x][j][1] = max(dp[x][j][1],dp[x][j-k-2][1]+dp[g[x][i]][k][1]);
					dp[x][j][0] = max(dp[x][j][0],dp[x][j-k-2][0]+dp[g[x][i]][k][1]);
				}
			}
	}
	for(int i=1; i<=movement; ++i){
		dp[x][i][0] = max(dp[x][i][0],dp[x][i-1][0]);
		dp[x][i][1] = max(dp[x][i][1],dp[x][i-1][1]);
	}
}

int main(){
	scanf("%d %d",&n,&movement);
	for(int i=1,a,b; i<n; ++i){
		scanf("%d %d",&a,&b);
		g[a].push_back(b);
		g[b].push_back(a);
	}
	getDp(0,-1);
	printf("%d\n",dp[0][movement][0]);
	return 0;
}
思路二:贪心

说实话看到这个贪心吊打正常 dp 我也很吃惊。

部分思路来自洛谷题解(但是赶脚讲的不是很清楚?),证明一下这 该死的 算法:
在这里插入图片描述
就是 ↑ \uparrow 这两种方案。

发现 最优时答案等于步数加一。那么左边那种浪费了很多步,右边那种浪费了很少的步数。

再考虑这个点的父节点——要是它的父节点要求它回家,那么这里省下来的步数没有任何的屁用!

说白了就是,一个父节点只能选一个子节点作为“省步”者

将子树中 最多能省下的步数 写成一个函数 s ( x ) = 2 ∣ x ∣ − r s(x)=2|x|-r s(x)=2xr ,其中 ∣ x ∣ |x| x 是走过的点数, r r r 是实际花费的步数。明显 s ( x ) s(x) s(x) 越大越好。

边界是 s ( x ) = 2 ( x ∈ F ) s(x)=2(x\in \mathbb{F}) s(x)=2(xF) ,这里 F \mathbb{F} F 是叶子节点点集。状态转移为 s ( x ) = max ⁡ v ∈ s o n x [ s ( v ) + 1 ] s(x)=\max_{v\in son_x}\left[s(v)+1\right] s(x)=vsonxmax[s(v)+1]

解释:如果走到一个儿子的子树,但最终走回 x x x ,那么一条边将被访问两次,故贡献为零。 v v v 则是一去不回。加的这个 1 1 1 是因为多走了一个点(即 x x x 本身),但只多走了一步(从 x x x v v v 一步)。根据 2 ∣ x ∣ − r 2|x|-r 2xr 可得。

这不就是 长链剖分 吗(或者说最大深度)?所以一定是 沿着最长链走到黑

其他节点只能去了又回来,平均每个点花费两步。

代码二:咕咕咕

你点一下超链接要死啊?

#include <iostream>
int main(){
	std::cout << "Do it yourself!" << std::endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值