【学习笔记】拉格朗日反演

280 篇文章 1 订阅

拉格朗日反演

0. 吐槽

在百度上的搜索很失败,几乎找不到有用的参考资料。甚至只有百度百科让我看懂了我在干什么。

数学蛋神 crashed \textsf{crashed} crashed 和万恶之源 rainybunny \textsf{rainybunny} rainybunny 都觉得它太简单而不写博客,我自惭形秽 😢

最后,看了超理论坛帖子太阳神的科普,才算是开始学习了。

1. 概述

我们知道 函数复合 是定义在 形式幂级数环 R ⟦ x ⟧ \mathnormal{R\llbracket x\rrbracket} R[[x]] 上的二元运算,即 ( F ∘ G ) ( x ) = F ( G ( x ) ) \mathnormal{(F\circ G)(x)=F(G(x))} (FG)(x)=F(G(x)) 。其封闭性与结合性显然,所以构成半群。那么我们能不能更进一步,让它成为群呢?

函数复合的单位元 ϵ ( x ) = x \epsilon(x)=x ϵ(x)=x 平凡,重点在于求逆元,即 复合逆。从函数的角度,就是求 f ( x ) = y f(x)=y f(x)=y反函数 g ( y ) = x g(y)=x g(y)=x 。当然这只是个初等的理解。

显然并非所有函数都存在复合逆,比如 y = 1 y=1 y=1 y = x 2 y=x^2 y=x2 。仔细看看这两个例子,我们大概也能想到:记 R ⟦ x ⟧ + R\llbracket x\rrbracket_{+} R[[x]]+常数项为零一次项非零 R R R 上形式幂级数,后文将会证明 R ⟦ x ⟧ + R\llbracket x\rrbracket_{+} R[[x]]+ 在函数复合运算上构成群。也就是说,对于任意 F ( x ) ∈ R ⟦ x ⟧ + F(x)\in R\llbracket x\rrbracket_{+} F(x)R[[x]]+,存在唯一的 G ( x ) = F − 1 ( x ) ∈ R ⟦ x ⟧ + G(x)=F^{-1}(x)\in R\llbracket x\rrbracket_+ G(x)=F1(x)R[[x]]+ 满足
F ( G ( x ) ) = G ( F ( x ) ) = x F(G(x))=G(F(x))=x F(G(x))=G(F(x))=x

在证明唯一性之前,我们先指明一个更有趣的事实是
F ( G ( x ) ) = x    ⟹    G ( F ( x ) ) = x F(G(x))=x\implies G(F(x))=x F(G(x))=xG(F(x))=x

用这种格式描述时,它看上去很神奇;虽然它不过是在说 左逆元等于右逆元。证明是容易的:一方面,若 α \alpha α 存在左逆元 l l l 和右逆元 r r r,则 l = l ( α r ) = ( l α ) r = r l=l(\alpha r)=(l\alpha)r=r l=l(αr)=(lα)r=r 。另一方面,注意到 R ⟦ x ⟧ + R\llbracket x\rrbracket_{+} R[[x]]+ 关于复合运算无零因子,且复合对加法有分配律,因此 l α = ϵ ⇒ α l α = α ⇒ ( α l − ϵ ) α = 0 ⇒ α l = ϵ l\alpha=\epsilon\Rightarrow\alpha l\alpha=\alpha\Rightarrow(\alpha l-\epsilon)\alpha=0\Rightarrow\alpha l=\epsilon lα=ϵαlα=α(αlϵ)α=0αl=ϵ 给出了右逆元构造。

下一节,我们将会直接构造出 F − 1 ( x ) F^{-1}(x) F1(x),那就是被称为 拉格朗日反演 的东西。为何名此?据称是因为 拉格朗日隐函数定理 Lagrange Implicit Function Theorem \text{Lagrange Implicit Function Theorem} Lagrange Implicit Function Theorem)提供了有力的理论支持。这个 L I F T \rm LIFT LIFT 定理说:

对于任意 ϕ ( x ) ∈ R ⟦ x ⟧ \phi(x)\in R\llbracket x\rrbracket ϕ(x)R[[x]],方程 F ( x ) = x ⋅ ϕ ( F ( x ) ) F(x)=x\cdot\phi(F(x)) F(x)=xϕ(F(x)) [ x 0 ] F ( x ) = 0 [x^0]F(x)=0 [x0]F(x)=0 时有唯一解,满足
n ⋅ [ x n ] f ( x ) = [ x n − 1 ] ϕ ( x ) n ( n ∈ N + ) n\cdot [x^n]f(x)=[x^{n-1}]\phi(x)^n\quad(n\in\N^+) n[xn]f(x)=[xn1]ϕ(x)n(nN+)

其实这种形式较好,因为 F ( x ) ∈ R ⟦ x ⟧ + F(x)\in R\llbracket x\rrbracket_+ F(x)R[[x]]+ 的限制容易被遗忘,而该形式中没有这种要求。可是我无法给出该形式的证明,非常抱歉

2. 拉格朗日反演

你可以在这里找到严肃的证明。下面相当于是摘抄了。

ϕ ( x ) = x F ( x ) \phi(x)={x\over F(x)} ϕ(x)=F(x)x 。由 F ( x ) ∈ R ⟦ x ⟧ + F(x)\in R\llbracket x\rrbracket_+ F(x)R[[x]]+ ϕ ( x ) ∈ R ⟦ x ⟧ \phi(x)\in R\llbracket x\rrbracket ϕ(x)R[[x]] 。考虑方程 G ( x ) = x ⋅ ϕ ( G ( x ) ) G(x)=x\cdot\phi(G(x)) G(x)=xϕ(G(x)) ϕ ( G ( x ) ) = G ( x ) x \phi(G(x))={G(x)\over x} ϕ(G(x))=xG(x),将有乘法逆元的 G ( x ) x G(x)\over x xG(x) 移项后得 x F ( G ( x ) ) = 1 {x\over F(G(x))}=1 F(G(x))x=1 。因此这就是复合逆!

于是套用 L I S T \rm LIST LIST 定理得
[ x n ] G ( x ) = n − 1 [ x n − 1 ] ϕ ( x ) n ( n ∈ N + ) [x^n]G(x)=n^{-1}[x^{n-1}]\phi(x)^n\quad(n\in\N^+) [xn]G(x)=n1[xn1]ϕ(x)n(nN+)

证明:首先拓域,将形式幂级数环拓展到 形式洛朗级数环
R (  ⁣ ( x )  ⁣ ) = { ∑ i ⩾ − n a i x i : n ∈ N + ,    a i ∈ R } R(\!(x)\!)=\left\{\sum_{i\geqslant -n}a_ix^i:n\in\N^+,\;a_i\in R \right\} R((x))={inaixi:nN+,aiR}

其支持函数复合,而且 F F F f i e l d \rm field field F (  ⁣ ( x )  ⁣ ) F(\!(x)\!) F((x)) 也同样是 f i e l d \rm field field 。扯远了,回到我们的证明上。

只需要注意到提取 x − 1 x^{-1} x1 系数的特殊性:任何形式洛朗级数的导数都不含有之。——或者你可以说是,导数的留数当然为 0 0 0

Lemma.(形式留数) 对任意 F ( x ) ∈ R ⟦ x ⟧ + F(x)\in R\llbracket x\rrbracket_+ F(x)R[[x]]+,有 [ x − 1 ] F ′ ( x ) F ( x ) k = [ k = − 1 ] [x^{-1}]F'(x)F(x)^k=[k=-1] [x1]F(x)F(x)k=[k=1]

Proof. 若 k ≠ − 1 k\ne -1 k=1 F ′ ( x ) F ( x ) k = [ F ( x ) k + 1 k + 1 ] ′ F'(x)F(x)^k=\left[\frac{F(x)^{k+1}}{k+1}\right]' F(x)F(x)k=[k+1F(x)k+1] 。若 k = − 1 k=-1 k=1 [ x − 1 ] F ′ ( x ) F ( x ) = [ x 0 ] F ′ ( x ) [ x 1 ] F ( x ) = 1 [x^{-1}]\frac{F'(x)}{F(x)}=\frac{[x^0]F'(x)}{[x^1]F(x)}=1 [x1]F(x)F(x)=[x1]F(x)[x0]F(x)=1

因此我们直接代入 F ( x ) − n d d x G ( F ( x ) ) F(x)^{-n}{\text{d}\over\text{d}x}G(F(x)) F(x)ndxdG(F(x))
[ x − 1 ] F ( x ) − n d d x G ( F ( x ) ) = [ x − 1 ] ∑ j ⩾ 1 j F ′ ( x ) F ( x ) j − n − 1 [ z j ] G ( z ) = n [ z n ] G ( z ) \begin{align*} [x^{-1}]F(x)^{-n}{\text{d}\over\text{d}x}G(F(x)) &=[x^{-1}]\sum_{j\geqslant 1}jF'(x)F(x)^{j-n-1}[z^j]G(z)\\ &=n[z^n]G(z) \end{align*} [x1]F(x)ndxdG(F(x))=[x1]j1jF(x)F(x)jn1[zj]G(z)=n[zn]G(z)

因为 lemma \text{lemma} lemma 表明只有 j = n j=n j=n 时提供非零值。又由 G ( F ( x ) ) = x G(F(x))=x G(F(x))=x 即得
[ x n ] G ( x ) = n − 1 [ x − 1 ] F ( x ) − n [x^n]G(x)=n^{-1}[x^{-1}]F(x)^{-n} [xn]G(x)=n1[x1]F(x)n

这与原式是等价的。 ■ \blacksquare

3. 拓展

最后一步中 G ( F ( x ) ) = x G(F(x))=x G(F(x))=x 并不必要,可以替换为 G ( F ( x ) ) = H ( x ) G(F(x))=H(x) G(F(x))=H(x),同样得到
[ x n ] G ( x ) = n − 1 [ x − 1 ] H ′ ( x ) F ( x ) − n [x^n]G(x)=n^{-1}[x^{-1}]H'(x)F(x)^{-n} [xn]G(x)=n1[x1]H(x)F(x)n

进一步拓展:考虑 G ( x ) G(x) G(x) H ( x ) = x k H(x)=x^k H(x)=xk 复合,设 F ( x ) = G − 1 ( x ) F(x)=G^{-1}(x) F(x)=G1(x)
[ x n ] G ( x ) k = n − 1 [ x − 1 ] k x k − 1 F ( x ) − n = k n − 1 [ x − k ] F ( x ) − n \begin{align*} [x^n]G(x)^k&=n^{-1}[x^{-1}]kx^{k-1}F(x)^{-n}\\ &=kn^{-1}[x^{-k}]F(x)^{-n} \end{align*} [xn]G(x)k=n1[x1]kxk1F(x)n=kn1[xk]F(x)n

当然还可以继续化为 − n − 1 [ x − k − 1 ] d d x F ( x ) − n = [ x − k − 1 ] F ′ ( x ) F ( x ) − n − 1 -n^{-1}[x^{-k-1}]\frac{\text{d}}{\text{d}x}F(x)^{-n}=[x^{-k-1}]F'(x)F(x)^{-n-1} n1[xk1]dxdF(x)n=[xk1]F(x)F(x)n1,恰好能去除常数因子。

也就是说:任意次幂、任意次项,随处可求。于是我们还可以求 G ( x ) G(x) G(x) 的多项式的某一项:
[ x n ] H ( G ( x ) ) = ∑ j ⩾ 0 G ( x ) j [ z j ] H ( z ) = ∑ j ⩾ 0 [ x − j − 1 ] F ′ ( x ) F ( x ) − n − 1 [ z j ] H ( z ) = [ x − 1 ] H ( x ) F ′ ( x ) F ( x ) − n − 1 \begin{align*} [x^n]H(G(x)) &=\sum_{j\geqslant 0}G(x)^j[z^j]H(z)\\ &=\sum_{j\geqslant 0}[x^{-j-1}]F'(x)F(x)^{-n-1}[z^j]H(z)\\ &=[x^{-1}]H(x)F'(x)F(x)^{-n-1} \end{align*} [xn]H(G(x))=j0G(x)j[zj]H(z)=j0[xj1]F(x)F(x)n1[zj]H(z)=[x1]H(x)F(x)F(x)n1

广义级数

广义二项级数

先放兔兔的博客太阳神的博客镇楼。广义二项级数 B t ( x ) \mathcal B_t(x) Bt(x) 被定义为
B t ( x ) = x B t ( x ) t + 1 \mathcal B_t(x)=x\mathcal B_t(x)^t+1 Bt(x)=xBt(x)t+1

至于为什么是这样,以及它的用处是什么,我实在说不出来。去兔兔的博客里翻吧。

广义指数级数被定义为
E t ( x ) = exp ⁡ ( x E t ( x ) t ) \mathcal E_t(x)=\exp(x\mathcal E_t(x)^t) Et(x)=exp(xEt(x)t)

Elegia \textsf{Elegia} Elegia 再谈

“我们几乎可以毫不费力地证明以下两类广义级数与其数列的对应关系。” —— Elegia \textsf{Elegia} Elegia

直接用 [ x − 1 ] H ( x ) F ′ ( x ) F ( x ) − n − 1 [x^{-1}]H(x)F'(x)F(x)^{-n-1} [x1]H(x)F(x)F(x)n1 去配凑
( t n + r n ) = [ x n ] ( ( 1 + x ) t ) n + 1 ( 1 + x ) r − t = [ x − 1 ] ( ( 1 + x ) t x ) n + 1 ( 1 + x ) r − t {tn+r\choose n}=[x^n]((1+x)^t)^{n+1}(1+x)^{r-t}\\ =[x^{-1}]\left(\frac{(1+x)^t}{x}\right)^{n+1}(1+x)^{r-t} (ntn+r)=[xn]((1+x)t)n+1(1+x)rt=[x1](x(1+x)t)n+1(1+x)rt

因此我们令 F ( x ) = x ( 1 + x ) t F(x)=\frac{x}{(1+x)^t} F(x)=(1+x)tx,有 F ′ ( x ) = 1 + x − t x ( 1 + x ) t + 1 F'(x)=\frac{1+x-tx}{(1+x)^{t+1}} F(x)=(1+x)t+11+xtx,令 H ( x ) = ( 1 + x ) r + 1 1 + x − t x H(x)={(1+x)^{r+1}\over 1+x-tx} H(x)=1+xtx(1+x)r+1 即可。

不难发现 F ( x ) F(x) F(x) 的复合逆就是 B t ( x ) − 1 \mathcal B_t(x)-1 Bt(x)1 。所以我们实际上得到了
[ x n ] H ( B t ( x ) − 1 ) = [ x n ] B t ( x ) r + 1 1 + ( 1 − t ) ( B t ( x ) − 1 ) = [ x n ] B t ( x ) r 1 − t + t B t ( x ) − 1 = ( t n + r n ) \begin{align*} &\quad[x^n]H(\mathcal B_t(x)-1) =[x^n]\frac{\mathcal B_t(x)^{r+1}}{1+(1-t)(\mathcal B_t(x)-1)}\\ &=[x^n]\frac{\mathcal B_t(x)^r}{1-t+t\mathcal B_t(x)^{-1}}={tn+r\choose n} \end{align*} [xn]H(Bt(x)1)=[xn]1+(1t)(Bt(x)1)Bt(x)r+1=[xn]1t+tBt(x)1Bt(x)r=(ntn+r)

这与 Tiw-Air-OAO \textsf{Tiw-Air-OAO} Tiw-Air-OAO 得到相同结果。

我们再试试
( t n + r ) n n ! = [ x n ] ( e t x ) n + 1 exp ⁡ ( ( r − t ) x ) = [ x − 1 ] ( exp ⁡ ( t x ) x ) n + 1 exp ⁡ ( ( r − t ) x ) \frac{(tn+r)^n}{n!}=[x^n](\mathrm{e}^{tx})^{n+1}\exp((r{-}t)x)\\ =[x^{-1}]\left(\frac{\exp(tx)}{x}\right)^{n+1}\exp((r{-}t)x)\\ n!(tn+r)n=[xn](etx)n+1exp((rt)x)=[x1](xexp(tx))n+1exp((rt)x)

因此我们令 F ( x ) = x exp ⁡ ( t x ) F(x)=\frac{x}{\exp(tx)} F(x)=exp(tx)x,有 F ′ ( x ) = ( 1 − t x ) exp ⁡ ( − t x ) F'(x)=(1-tx)\exp(-tx) F(x)=(1tx)exp(tx),令 H ( x ) = exp ⁡ ( r x ) 1 − t x H(x)=\frac{\exp(rx)}{1-tx} H(x)=1txexp(rx) 即可。

并不容易注意到 F ( x ) F(x) F(x) 的复合逆是 ln ⁡ E t ( x ) = x E t ( x ) t \ln\mathcal E_t(x)=x\mathcal E_t(x)^t lnEt(x)=xEt(x)t,但是确实如此。因此答案为
[ x n ] H ( ln ⁡ E t ( x ) ) = E t ( x ) r 1 − t x ⋅ E t ( x ) t [x^n]H(\ln\mathcal E_t(x))=\frac{\mathcal E_t(x)^r}{1-tx\cdot\mathcal E_t(x)^t} [xn]H(lnEt(x))=1txEt(x)tEt(x)r

qwaszx \textsf{qwaszx} qwaszx 再谈

F ( x ) ∈ R ⟦ x ⟧ F(x)\in R\llbracket x\rrbracket F(x)R[[x]] 常数为 1 1 1 。设 f n ( x ) = [ z n ] F ( z ) x = [ z n ] exp ⁡ ( x ln ⁡ F ( z ) ) f_n(x)=[z^n]F(z)^x=[z^n]\exp(x\ln F(z)) fn(x)=[zn]F(z)x=[zn]exp(xlnF(z)),这是关于 x x x n n n 次多项式。设 B t ( x ) \mathcal B_t(x) Bt(x) 满足
B t ( x ) = F ( x B t ( x ) t ) \mathcal B_t(x)=F(x\mathcal B_t(x)^t) Bt(x)=F(xBt(x)t)

G ( x ) = x B t ( x ) t G(x)=x\mathcal B_t(x)^t G(x)=xBt(x)t,可见 G ( x ) F ( G ( x ) ) t = x {G(x)\over F(G(x))^t}=x F(G(x))tG(x)=x,即 G − 1 ( x ) = x F ( x ) t G^{-1}(x)=\frac{x}{F(x)^t} G1(x)=F(x)tx 。注意 [ x 0 ] F ( x ) = 1 [x^0]F(x)=1 [x0]F(x)=1 保证了 G − 1 ( x ) G^{-1}(x) G1(x) 是形式幂级数。于是
[ x n ] B t ( x ) r = [ x n ] F ( G ( x ) ) r = [ x − 1 ] F ( x ) r ⋅ G − 1 ( x ) − n − 1 ⋅ d d x G − 1 ( x ) = [ x n ] [ F ( x ) t n + r − t x ⋅ F ′ ( x ) F ( x ) t n + r − 1 ] = f n ( t n + r ) − [ x n − 1 ] t t n + r [ F ( x ) t n + r ] ′ = r t n + r f n ( t n + r ) \begin{align*} [x^n]\mathcal B_t(x)^r &=[x^n]F(G(x))^r\\ &=[x^{-1}]F(x)^r\cdot G^{-1}(x)^{-n-1}\cdot{\text{d}\over\text{d}x}G^{-1}(x)\\ &=[x^n]\left[F(x)^{tn+r}-tx\cdot F'(x)F(x)^{tn+r-1}\right]\\ &=f_{n}(tn+r)-[x^{n-1}]\frac{t}{tn+r}\left[F(x)^{tn+r}\right]'\\ &=\frac{r}{tn+r}f_n(tn+r) \end{align*} [xn]Bt(x)r=[xn]F(G(x))r=[x1]F(x)rG1(x)n1dxdG1(x)=[xn][F(x)tn+rtxF(x)F(x)tn+r1]=fn(tn+r)[xn1]tn+rt[F(x)tn+r]=tn+rrfn(tn+r)

现在我们知道 B t ( x ) r = ∑ n ⩾ 0 r t n + r f n ( t n + r ) x n \mathcal B_t(x)^r=\sum_{n\geqslant 0}\frac{r}{tn+r}f_n(tn+r)x^n Bt(x)r=n0tn+rrfn(tn+r)xn,借助求导(或者说是 ϑ \vartheta ϑ 算子)得到
B t ( x ) r + t x r [ B t ( x ) r ] ′ = ∑ n ⩾ 0 f n ( t n + r ) x n \mathcal B_t(x)^r+\frac{tx}{r}\left[\mathcal B_t(x)^r\right]'=\sum_{n\geqslant 0}f_n(tn+r)x^n Bt(x)r+rtx[Bt(x)r]=n0fn(tn+r)xn

另一方面
d d x B t ( x ) = d d x F ( x B t ( x ) t ) = F ′ ( x B t ( x ) t ) ( B t ( x ) t + t x ⋅ B t ′ ( x ) B t ( x ) t − 1 ) \begin{align*} \frac{\text{d}}{\text{d}x}\mathcal B_t(x) &=\frac{\text{d}}{\text{d}x}F(x\mathcal B_t(x)^t)\\ &=F'(x\mathcal B_t(x)^t)\left(\mathcal B_t(x)^t+tx\cdot \mathcal B'_t(x)\mathcal B_t(x)^{t-1}\right) \end{align*} dxdBt(x)=dxdF(xBt(x)t)=F(xBt(x)t)(Bt(x)t+txBt(x)Bt(x)t1)

可以解出 B t ′ ( x ) \mathcal B_t'(x) Bt(x),代入回去得
∑ n ⩾ 0 f n ( t n + r ) ⋅ x n = F t ( x ) r 1 − t x ⋅ F t ( x ) t − 1 ⋅ F ′ ( x F t ( x ) t ) \sum_{n\geqslant 0}f_n(tn+r)\cdot x^n=\frac{\mathcal F_t(x)^r}{1-tx\cdot\mathcal F_t(x)^{t-1}\cdot F'(x\mathcal F_t(x)^t)} n0fn(tn+r)xn=1txFt(x)t1F(xFt(x)t)Ft(x)r

关键就在于 f n ( t n + r ) = [ x n ] F ( x ) t n + r f_n(tn+r)=[x^n]F(x)^{tn+r} fn(tn+r)=[xn]F(x)tn+r 是什么。

F ( x ) = 1 + x F(x)=1+x F(x)=1+x 得到广义二项级数,其中 f n ( t n + r ) = ( t n + r n ) f_n(tn+r)={tn+r\choose n} fn(tn+r)=(ntn+r)

F ( x ) = e x F(x)=\mathrm{e}^x F(x)=ex 得到广义指数级数,其中 f n ( t n + r ) = ( t n + r ) n n ! f_n(tn+r)={(tn+r)^n\over n!} fn(tn+r)=n!(tn+r)n

F ( x ) = x 1 − e − x F(x)=\frac{x}{1-\mathrm{e}^{-x}} F(x)=1exx 得到斯特林多项式,我也不知道这是啥东西。

多元拉格朗日反演

H , G i    ( i ∈ [ 1 , n ] ) H,G_i\;(i\in[1,n]) H,Gi(i[1,n]) 分别是 x \bf x x 上的形式洛朗级数和形式幂级数,其中 x = ( x 1 , x 2 , … , x n ) \mathbf{x}=(x_1,x_2,\dots,x_n) x=(x1,x2,,xn),也就是 n n n G F \rm GF GF 。按:这虽可以让形式变简洁,却也更容易让人头大。

∀ i ∈ [ 1 , n ] ,    G i ( 0 ) ≠ 0 \forall i\in[1,n],\;G_i(\mathbf{0})\ne 0 i[1,n],Gi(0)=0 F i = x i ⋅ G i ( F ) F_i=x_i\cdot G_i(\mathbf{F}) Fi=xiGi(F) x \bf x x 上的形式幂级数,其中 F = ( F 1 , F 2 , … , F n ) \mathbf{F}=(F_1,F_2,\dots,F_n) F=(F1,F2,,Fn) 。按:也就是说 F = x ∗ G ( F ) {\bf F}={\bf x}\ast{\bf G}({\bf F}) F=xG(F),其中 ∗ \ast 表示对应位相乘。所以和单变元的 L I S T \rm LIST LIST 定理是类似的。

简记 x k = x 1 k 1 x 2 k 2 ⋯ x n k n \mathbf{x^k}=x_1^{k_1}x_2^{k_2}\cdots x_n^{k_n} xk=x1k1x2k2xnkn,同理记 G k = G 1 ( x ) k 1 G 2 ( x ) k 2 ⋯ G n ( x ) k n \mathbf{G^k}=G_1(\mathbf{x})^{k_1}G_2(\mathbf{x})^{k_2}\cdots G_n(\mathbf{x})^{k_n} Gk=G1(x)k1G2(x)k2Gn(x)kn 。则有
[ x k ] H ( F ) = [ x k ] H G k ∥ [ i = j ] − x j G i ( x ) ∂ G i ( x ) ∂ x j ∥ [\mathbf{x^k}]H(\mathbf{F})=[\mathbf{x^k}]H\mathbf{G^k}\left\Vert[i=j]-\frac{x_j}{G_i(\mathbf{x})}\frac{\partial G_i(\mathbf{x})}{\partial x_j}\right\Vert [xk]H(F)=[xk]HGk [i=j]Gi(x)xjxjGi(x)

最右侧的符号表示 det ⁡ ( A ) \det(A) det(A),其中 A i , j A_{i,j} Ai,j 表达式在 ∥ \Vert 间给出。

证明:显然只需证明 H ( x ) = x m H({\bf x})={\bf x^m} H(x)=xm 时上式成立即可,其中 m = ( m 1 , m 2 , … , m n ) {\bf m}=(m_1,m_2,\dots,m_n) m=(m1,m2,,mn) 是不定的。

F i F_i Fi G i G_i Gi 看做 E G F \rm EGF EGF,则 F i = x i ⋅ G i ( F ) F_i=x_i\cdot G_i({\bf F}) Fi=xiGi(F) 描述了以第 i i i 种节点 x i x_i xi 为根的有根树(形式变元的指数为点的数量)。

因此 L H S = [ x k ] ∏ F i ( x ) m i {\rm LHS}=[{\bf x^k}]\prod F_i({\bf x})^{m_i} LHS=[xk]Fi(x)mi 描述了 m i m_i mi 颗以第 i i i 种节点为根的有根树森林,满足第 i i i 种节点共有 k i k_i ki 个。

x m G k \bf x^mG^k xmGk 的意图无非是令每个节点任选其孩子集合——用 x m \mathbf{x^m} xm 指定了根节点,然后 G k \mathbf{G^k} Gk 给每个点的出度匹配其他点的入度,计入形式变元的指标。

显然这是可能成环的。构造 n × n n\times n n×n 方阵 A A A 满足
A i , j = x j G i ( x ) ∂ G i ( x ) ∂ x j A_{i,j}=\frac{x_j}{G_i({\bf x})}\frac{\partial G_i({\bf x})}{\partial x_j} Ai,j=Gi(x)xjxjGi(x)

Remark. 这里 A i , j A_{i,j} Ai,j 就是某个 i i i 类点强制匹配 j j j 类点的方案数。求导再乘 x j x_j xj 就是 ϑ \vartheta ϑ 算子,统计了可用的 j j j 类点数量;除以 G i ( x ) G_i({\bf x}) Gi(x) 用于抵消外面的 G k \bf G^k Gk

将图中的 t t t 个点替换为长度为 t t t 的环,会被 tr ⁡ ( A t ) \operatorname{tr}(A^t) tr(At) 统计 t t t 次。故单个环的 “替代” 生成函数为
C = ∑ t ⩾ 1 tr ⁡ ( A t ) t = − tr ⁡ log ⁡ ( I − A ) C=\sum_{t\geqslant 1}{\operatorname{tr}(A^t)\over t}=-\operatorname{tr}\log(I{-}A) C=t1ttr(At)=trlog(IA)

对其容斥的 G F \rm GF GF
∑ l ⩾ 0 ( − 1 ) l C l l ! = exp ⁡ ( tr ⁡ log ⁡ ( I − A ) ) \sum_{l\geqslant 0}\frac{(-1)^lC^l}{l!}=\exp(\operatorname{tr}\log(I{-}A)) l0l!(1)lCl=exp(trlog(IA))

我们知道 exp ⁡ ( tr ⁡ A ) = det ⁡ ( exp ⁡ A ) \exp(\operatorname{tr}A)=\det(\exp A) exp(trA)=det(expA),因此容斥系数 G F \rm GF GF 就是 det ⁡ ( I − A ) \det(I{-}A) det(IA),原命题得证。 ■ \blacksquare

对于集合幂级数而言,实际计算时可以保留 tr ⁡ log ⁡ ( I − A ) \operatorname{tr}\log(I{-}A) trlog(IA) 形式,这是比 det ⁡ \det det 好算一点的。——摘编自 Elegia \textsf{Elegia} Elegia

  • 6
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值