[HDU5829]Rikka with Subset

280 篇文章 1 订阅

题目

传送门 to HDU

传送门 to VJ

思路

利用差分的思想,我们只需要求 恰好第 k k k 的值之和即可。

A A A数组 从大到小排序,分开考虑每一个数的贡献

对于第 i i i个数,它的左边(比它大的)被选择了 k − 1 k-1 k1个、它的右边(比它小的)可以随便选择。所以其贡献就是 A i ( i − 1 k − 1 ) 2 n − i A_i{i-1\choose k-1}2^{n-i} Ai(k1i1)2ni

所以,恰好第 k k k大的值之和 c k c_k ck就满足:

c k = ∑ i = k n A i ( i − 1 k − 1 ) 2 n − i c_k=\sum_{i=k}^{n}A_i{i-1\choose k-1}2^{n-i} ck=i=knAi(k1i1)2ni

我们把组合数拆开成阶乘的形式,得到

c k = ∑ i = k n A i ( i − 1 ) ! ( k − 1 ) ! ( i − k ) ! 2 n − i c_k=\sum_{i=k}^{n}A_i\frac{(i-1)!}{(k-1)!(i-k)!}2^{n-i} ck=i=knAi(k1)!(ik)!(i1)!2ni

把它们挪动一下,得到 ( k − 1 ) ! c k = ∑ i = k n 2 n − i ( i − 1 ) ! A i ⋅ 1 ( i − k ) ! (k-1)!c_k=\sum_{i=k}^{n}2^{n-i}(i-1)!A_i\cdot\frac{1}{(i-k)!} (k1)!ck=i=kn2ni(i1)!Ai(ik)!1

f ( x ) = 2 x ( n − x − 1 ) ! A n − x g ( x ) = 1 x ! f(x)=2^{x}(n-x-1)!A_{n-x}\\g(x)=\frac{1}{x!} f(x)=2x(nx1)!Anxg(x)=x!1

就得出 c k = ∑ i = k n f ( n − i ) g ( i − k ) ( k − 1 ) ! c_k=\frac{\sum_{i=k}^{n}f(n-i)g(i-k)}{(k-1)!} ck=(k1)!i=knf(ni)g(ik)

不难发现,上面的枚举是可以被等效替代的。为了让它看上去更像 卷积,写出这个式子:

c k = ∑ i = 0 n − k f ( n − k − i ) g ( i ) ( k − 1 ) ! c_k=\frac{\sum_{i=0}^{n-k}f(n-k-i)g(i)}{(k-1)!} ck=(k1)!i=0nkf(nki)g(i)

或者写成 c n − k = ∑ i = 0 k f ( k − i ) g ( i ) ( n − k − 1 ) ! c_{n-k}=\frac{\sum_{i=0}^{k}f(k-i)g(i)}{(n-k-1)!} cnk=(nk1)!i=0kf(ki)g(i)

所以直接卷积一次即可。

代码

建议大家不要去打这道题——这就是个死贱人卡常题。我一直 TLE \text{TLE} TLE。即使开了优化也过不了。

# pragma GCC optimize("Ofast")
# pragma GCC optimize(3)
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <ctime>
using namespace std;
inline int readint(){
    int a = 0; char c = getchar(), f = 1;
    for(; c<'0' or c>'9'; c=getchar())
        if(c == '-') f = -f;
    for(; '0'<=c and c<='9'; c=getchar())
        a = (a<<3)+(a<<1)+(c^48);
    return a*f;
}
inline void writeint(int x){
    if(x < 0) putchar('-'), x = -x;
    if(x > 9) writeint(x/10);
    putchar(x%10+'0');
}
inline int qkpow(long long base,int q,int Mod){
    int ans = 1; base %= Mod;
    for(; q; q>>=1,base=base*base%Mod)
        if(q&1) ans = base*ans%Mod;
    return ans;
}

const int Mod = 998244353, MaxN = 500005;

int omg[MaxN], d[MaxN], inv[MaxN];
void NTT(int a[],const int &n,const int &opt){
    static int lastN = -1; // 上一个n
    if(lastN != n){
        long long g = qkpow(3,(Mod-1)/n,Mod);
        for(int i=(omg[0]=1); i<n; ++i)
            omg[i] = omg[i-1]*g%Mod;
        int logN = 0;
        while((1<<logN) < n) ++ logN;
        for(int i=1; i<n; ++i)
            d[i] = d[i>>1]>>1|(i&1)<<logN>>1;
        lastN = n;
    }
    for(int i=1; i<n; ++i)
        if(d[i] < i) swap(a[d[i]],a[i]);
    for(int len=2; len<=n; len<<=1)
        for(int *p=a,m=len>>1; p!=a+n; p+=len)
            for(int i=0; i<m; ++i){
                int t = 1ll*omg[(n/len*opt*i+n)%n]*p[i+m]%Mod;
                p[i+m] = (p[i]-t+Mod)%Mod, p[i] = (p[i]+t)%Mod;
            }
    if(opt == -1) for(int i=0; i<n; ++i)
        a[i] = 1ll*a[i]*inv[n]%Mod;
}

int n, a[MaxN];
void input(){
    n = readint();
    for(int i=1; i<=n; ++i)
        a[i] = readint();
}

int f[MaxN], g[MaxN], jc[MaxN];
bool greaterInt(const int &a,const int &b){ return a > b; }
void solve(){
    if(n == 1){
        writeint(a[1]), putchar('\n');
        return ;
    }
    sort(a+1,a+n+1,greaterInt);
    int N = (n-1)<<1; N &= -N;
    while(N <= (n-1)<<1) N <<= 1;
    memset(f+n,0,(N-n)<<2), memset(g+n,0,(N-n)<<2);
    for(int i=0,base=1; i<n; ++i,base=(base<<1)%Mod)
        f[i] = 1ll*jc[n-i-1]*base%Mod*a[n-i]%Mod;
    for(int i=(g[0]=1); i<n; ++i)
        g[i] = 1ll*g[i-1]*inv[i]%Mod;
    NTT(f,N,1), NTT(g,N,1);
    for(int i=0; i<N; ++i)
        f[i] = 1ll*f[i]*g[i]%Mod;
    NTT(f,N,-1); // 求卷积
    for(int i=(g[0]=1); i<n; ++i)
        g[i] = 1ll*g[i-1]*inv[i]%Mod;
    for(int i=n; i; --i) // 原本g[x]=1/(x!)
        g[i] = 1ll*g[i-1]*f[n-i]%Mod;
    for(int i=1,x=0; i<=n; x=(g[i]+x)%Mod,++i) // 还原查分
        writeint((g[i]+x)%Mod), putchar(' ');
    putchar('\n');
}

int main(){
    // time_t started = clock();
    // freopen("rws.in","r",stdin);
    // freopen("rws.out","w",stdout);
    inv[1] = jc[0] = jc[1] = 1;
    for(int i=2; i<MaxN; ++i){
        inv[i] = 1ll*(Mod-Mod/i)*inv[Mod%i]%Mod;
        jc[i] = 1ll*jc[i-1]*i%Mod;
    }
    for(int T=readint(); T; --T)
        input(), solve();
    // freopen("con","w",stdout);
    // printf("Running Time: %lld\n",clock()-started);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值