[六省联考2017]分手是祝愿

题目

传送门 to luogu

思路

50 % 50\% 50% 的数据

对于 k = n k=n k=n 的数据,我们只需要求出,最少要操作多少次,能够关上所有的灯。

注意到 n n n 号灯只能用开关 n n n 控制,所以开关 n n n 是否要操作是固定的。此时,对于 n − 1 n-1 n1 号灯来说,前面的开关都无法调整,所以开关 n − 1 n-1 n1 是否要操作也唯一固定。对于 n − 2 , n − 3 , … , 1 n-2,n-3,\dots,1 n2,n3,,1 都是一样的。

调和级数 O ( ∑ i = 1 n ⌊ n i ⌋ ) = O ( n log ⁡ n ) \mathcal O(\sum_{i=1}^{n}\lfloor\frac{n}{i}\rfloor)=\mathcal O(n\log n) O(i=1nin)=O(nlogn) ,所以复杂度有保障。

100 % 100\% 100% 的数据

从上面的分析来看,最优操作方案是唯一的。所以,如果我们按了本就该按的开关,最优方案就可以少按一次;反之,最优方案就要多按一次开关。所以,转移只跟最优方案需要按开关的次数有关

于是,我们可以设计出一个 d p dp dp ,用 f ( x ) f(x) f(x) 表示最优方案需要按 x x x 次按钮时,期望操作次数。很简单可以写出

f ( x ) = x n ⋅ f ( x − 1 ) + n − x n ⋅ f ( x + 1 ) + 1 f(x)=\frac{x}{n}\cdot f(x-1)+\frac{n-x}{n}\cdot f(x+1)+1 f(x)=nxf(x1)+nnxf(x+1)+1

⇒    ( n − x ) ⋅ f ( x + 1 ) = n ⋅ f ( x ) − x ⋅ f ( x − 1 ) − n \Rightarrow\;(n-x)\cdot f(x+1)=n\cdot f(x)-x\cdot f(x-1)-n (nx)f(x+1)=nf(x)xf(x1)n

这个式子只对 x ∈ ( k , n ] x\in(k,n] x(k,n] 有效,所以不能把 x = k x=k x=k 直接代入求值。但是我们可以解方程!

不妨设

f ( x ) = a x ⋅ f ( k + 1 ) + b x f(x)=a_x\cdot f(k+1)+b_x f(x)=axf(k+1)+bx

根据 d p dp dp 方程式, a x + 1 a_{x+1} ax+1 可以由 a x − 1 , a x a_{x-1},a_x ax1,ax 推出, b b b 类似。边界也很好写,

{ a k = 0 b k = f ( k ) ,    { a k + 1 = 1 b k + 1 = 0 \begin{cases}a_k=0\\b_k=f(k)\end{cases},\;\begin{cases}a_{k+1}=1\\b_{k+1}=0\end{cases} {ak=0bk=f(k),{ak+1=1bk+1=0

最后一路推到 a n + 1 , b n + 1 a_{n+1},b_{n+1} an+1,bn+1 ,拿到这个式子

( n − n ) ⋅ f ( n + 1 ) = a n + 1 ⋅ f ( k + 1 ) + b n + 1 = 0 (n-n)\cdot f(n+1)=a_{n+1}\cdot f(k+1)+b_{n+1} = 0 (nn)f(n+1)=an+1f(k+1)+bn+1=0

⇒    f ( k + 1 ) = − b n + 1 a n + 1 \Rightarrow\;f(k+1)=\frac{-b_{n+1}}{a_{n+1}} f(k+1)=an+1bn+1

如果 a n + 1 = 0 a_{n+1}=0 an+1=0 呢?不会的。下证 ∀ i ∈ [ k , n ) , a i < a i + 1 \forall i\in[k,n),a_{i}<a_{i+1} i[k,n),ai<ai+1

利用数学归纳法。 0 = a k < a k + 1 = 1 0=a_k<a_{k+1}=1 0=ak<ak+1=1 。而在 i ∈ ( k , n ) , a i − 1 < a i i\in(k,n),a_{i-1}<a_i i(k,n),ai1<ai 时,我们有

a i + 1 = n a i − i a i − 1 = a i + ( n − i − 1 ) a i + i ( a i − a i − 1 ) > a i a_{i+1}=na_i-ia_{i-1}=a_i+(n-i-1)a_i+i(a_i-a_{i-1})>a_i ai+1=naiiai1=ai+(ni1)ai+i(aiai1)>ai

所以 a n − 1 < a n a_{n-1}<a_n an1<an ,由是则 a n + 1 = n ( a n − a n − 1 ) > 0 a_{n+1}=n(a_n-a_{n-1})>0 an+1=n(anan1)>0 ,故可行。

话说为什么我想不到题解里面那些简单的做法啊 😢

代码

这个模数 1 0 5 + 3 10^5+3 105+3 有几个好处:

  • 是一个小质数,逆元均存在。
  • 略大于 n n n ,不会出现恰好除以该模数的情况。
#include <cstdio>
#include <iostream>
#include <vector>
using namespace std;
typedef long long int_;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}

const int zxy = 100003;
int inv[zxy], a[zxy], n, dp[zxy];
vector< int > son[zxy];

int main(){
	inv[0] = inv[1] = 1; n = readint();
	for(int i=2; i<zxy; ++i)
		inv[i] = (0ll+zxy-zxy/i)
			*inv[zxy%i]%zxy;
	int k = readint();
	// dp[i] = 1+i*dp[i-1]/n+(n-i)*dp[i+1]/n
	// (n-i)*dp[i+1] = n*dp[i]-n-i*dp[i-1]
	for(int i=0; i<=k; ++i) dp[i] = i;
	int_ a0 = 0, b0 = k, a1 = 1, b1 = 0;
	for(int i=k+1; i<=n; ++i){
		// dp[i-1] = a0*dp[k+1]+b0
		// dp[ i ] = a1*dp[k+1]+b1
		int_ a2 = (n*a1-i*a0)%zxy;
		int_ b2 = (n*b1-n-i*b0)%zxy;
		a2 = (a2*inv[n-i]%zxy+zxy)%zxy;
		b2 = (b2*inv[n-i]%zxy+zxy)%zxy;
		a0 = a1, b0 = b1; // 向前移动
		a1 = a2, b1 = b2; // 向前移动
	}
	dp[k+1] = (zxy-b1)*inv[a1]%zxy;
	for(int i=k+1; i<n; ++i){
		int &t = dp[i+1] = (1ll*n*dp[i]
			-n-1ll*i*dp[i-1])%zxy;
		t = (0ll+t+zxy)*inv[n-i]%zxy;
	}
	for(int i=1; i<=n; ++i)
		a[i] = readint();
	for(int i=1; i<=n; ++i)
		for(int j=1; j<=n/i; ++j)
			son[i*j].push_back(i);
	int cnt = 0;
	for(int i=n; i>=1; --i){
		cnt += a[i];
		for(auto j : son[i])
			a[j] ^= a[i];
	}
	int ans = dp[cnt];
	for(int i=1; i<=n; ++i)
		ans = 1ll*ans*i%zxy;
	printf("%d\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值