[CF891C]Envy

122 篇文章 0 订阅
98 篇文章 0 订阅

题目

传送门 to luogu

思路

一开始以为是 l c t \tt lct lct 硬刚。结果看题解发现了更优美的解法!

注意到这样一个性质,所有的最小生成树,某个权值的边的数量相同。也就是说,无论你怎样选择,最终都会选出 c w c_w cw 条权值为 w w w 的边。

证明?不需要啊 😂 显然加入了权值不超过 w w w 的边之后,形成的连通块是不变的,无论怎么选边。那么权值为 w w w 的边的数量显然就是连通块大小作差。

所以把所有询问拆成小询问(毕竟连通性总是不变),然后排序。查询相当于把权值严格小于的全部加入并查集,然后加入这些边,看会不会形成环。回退就行。

代码

#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long int_;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}

const int MaxN = 500005;

struct UFS{
	int fa[MaxN], rnk[MaxN];
	vector< int > zxy; // fucked
	void init(int n){
		for(int i=1; i<=n; ++i)
			fa[i] = i, rnk[i] = 1;
		zxy.clear();
	}
	inline int find(int a) const {
		for(; a^fa[a]; a=fa[a]);
		return a; // 直接跳到根
	}
	inline bool merge(int a,int b){
		int x = find(a), y = find(b);
		if(x == y) return false;
		if(rnk[x] > rnk[y]) swap(x,y);
		fa[x] = y, rnk[y] += rnk[x];
		zxy.push_back(x); return 1;
	}
	void stepBack(){
		int x = zxy.back();
		rnk[fa[x]] -= rnk[x];
		fa[x] = x, zxy.pop_back();
	}
};

struct Edge{
	int a, b, v;
	bool operator < (const Edge &t) const {
		return v < t.v; // 按照 v 排序
	}
};
Edge ori[MaxN], e[MaxN];

struct Query{
	int id, k; // 第 id 组询问,关于第 k 条边
	bool operator < (const Query &t) const {
		if(ori[k].v != ori[t.k].v)
			return ori[k].v < ori[t.k].v;
		return id < t.id; // id 相同放一块儿
	}
};
Query ask[MaxN];

bool ans[MaxN]; UFS xyx;
int n, m, q, tot; // basic info
void solve(){
	int p = 1; // [1,p)的小询问已考虑
	for(int i=1,nxt; i<=m; i=nxt){
		/* 考虑边权为 e[i].v 的 */ ;
		while(p <= tot &&
		ori[ask[p].k].v == e[i].v){
			ans[ask[p].id] =
				ans[ask[p].id]
				&& xyx.merge(
					ori[ask[p].k].a,
					ori[ask[p].k].b
				);
			if(p <= tot && // 下一个换了个询问
			ask[p+1].id != ask[p].id)
				while(!xyx.zxy.empty())
					xyx.stepBack();
			++ p; // 无论如何,去下一个询问
		}
		/* 然后加入所有边权为 e[i].v 的 */ ;
		for(nxt=i; nxt<=m; ++nxt)
			if(e[nxt].v != e[i].v) break;
			else xyx.merge(e[nxt].a,e[nxt].b);
		xyx.zxy.clear(); // 这些边不回退
	}
	for(int i=1; i<=q; ++i)
		puts(ans[i] ? "YES" : "NO");
}

int main(){
	n = readint(), m = readint();
	for(int i=1; i<=m; ++i){
		e[i].a = readint();
		e[i].b = readint();
		e[i].v = readint();
		ori[i] = e[i]; // 一个排序一个不
	}
	q = readint(), tot = 0;
	for(int i=1; i<=q; ++i){
		int lj = readint();
		while(lj --){
			ask[++ tot].id = i;
			ask[tot].k = readint();
		}
		ans[i] = true; // 先肯定
	}
	sort(ask+1,ask+tot+1);
	sort(e+1,e+m+1);
	xyx.init(n), solve();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>