题目
思路
一开始以为是 l c t \tt lct lct 硬刚。结果看题解发现了更优美的解法!
注意到这样一个性质,所有的最小生成树,某个权值的边的数量相同。也就是说,无论你怎样选择,最终都会选出 c w c_w cw 条权值为 w w w 的边。
证明?不需要啊 😂 显然加入了权值不超过 w w w 的边之后,形成的连通块是不变的,无论怎么选边。那么权值为 w w w 的边的数量显然就是连通块大小作差。
所以把所有询问拆成小询问(毕竟连通性总是不变),然后排序。查询相当于把权值严格小于的全部加入并查集,然后加入这些边,看会不会形成环。回退就行。
代码
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long int_;
inline int readint(){
int a = 0; char c = getchar(), f = 1;
for(; c<'0'||c>'9'; c=getchar())
if(c == '-') f = -f;
for(; '0'<=c&&c<='9'; c=getchar())
a = (a<<3)+(a<<1)+(c^48);
return a*f;
}
const int MaxN = 500005;
struct UFS{
int fa[MaxN], rnk[MaxN];
vector< int > zxy; // fucked
void init(int n){
for(int i=1; i<=n; ++i)
fa[i] = i, rnk[i] = 1;
zxy.clear();
}
inline int find(int a) const {
for(; a^fa[a]; a=fa[a]);
return a; // 直接跳到根
}
inline bool merge(int a,int b){
int x = find(a), y = find(b);
if(x == y) return false;
if(rnk[x] > rnk[y]) swap(x,y);
fa[x] = y, rnk[y] += rnk[x];
zxy.push_back(x); return 1;
}
void stepBack(){
int x = zxy.back();
rnk[fa[x]] -= rnk[x];
fa[x] = x, zxy.pop_back();
}
};
struct Edge{
int a, b, v;
bool operator < (const Edge &t) const {
return v < t.v; // 按照 v 排序
}
};
Edge ori[MaxN], e[MaxN];
struct Query{
int id, k; // 第 id 组询问,关于第 k 条边
bool operator < (const Query &t) const {
if(ori[k].v != ori[t.k].v)
return ori[k].v < ori[t.k].v;
return id < t.id; // id 相同放一块儿
}
};
Query ask[MaxN];
bool ans[MaxN]; UFS xyx;
int n, m, q, tot; // basic info
void solve(){
int p = 1; // [1,p)的小询问已考虑
for(int i=1,nxt; i<=m; i=nxt){
/* 考虑边权为 e[i].v 的 */ ;
while(p <= tot &&
ori[ask[p].k].v == e[i].v){
ans[ask[p].id] =
ans[ask[p].id]
&& xyx.merge(
ori[ask[p].k].a,
ori[ask[p].k].b
);
if(p <= tot && // 下一个换了个询问
ask[p+1].id != ask[p].id)
while(!xyx.zxy.empty())
xyx.stepBack();
++ p; // 无论如何,去下一个询问
}
/* 然后加入所有边权为 e[i].v 的 */ ;
for(nxt=i; nxt<=m; ++nxt)
if(e[nxt].v != e[i].v) break;
else xyx.merge(e[nxt].a,e[nxt].b);
xyx.zxy.clear(); // 这些边不回退
}
for(int i=1; i<=q; ++i)
puts(ans[i] ? "YES" : "NO");
}
int main(){
n = readint(), m = readint();
for(int i=1; i<=m; ++i){
e[i].a = readint();
e[i].b = readint();
e[i].v = readint();
ori[i] = e[i]; // 一个排序一个不
}
q = readint(), tot = 0;
for(int i=1; i<=q; ++i){
int lj = readint();
while(lj --){
ask[++ tot].id = i;
ask[tot].k = readint();
}
ans[i] = true; // 先肯定
}
sort(ask+1,ask+tot+1);
sort(e+1,e+m+1);
xyx.init(n), solve();
return 0;
}