题目
思路
w w w 为凸函数,有决策单调性。用分治,每次取区间中点 m i d mid mid 并暴力求出其决策点,然后递归。无论决策点区间是如何划分的,只要一共 O ( log n ) \mathcal O(\log n) O(logn) 层,复杂度就没问题。
具体的,本题中决策点区间 L , R L,R L,R 不会在欲求出区间 l , r l,r l,r 的右边。如果 R < l R<l R<l,那就需要提前加入 ( R , l ) (R,l) (R,l) 的元素,这样分治中的时间复杂度最大是 O ( ∣ r − l ∣ + ∣ R − L ∣ ) \mathcal O(|r-l|+|R-L|) O(∣r−l∣+∣R−L∣) 的。
代码
如何评价开了 l o n g l o n g \tt long\; long longlong 却把极大值设置为 I N T _ M A X \rm INT\_MAX INT_MAX 的行为……
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long int_;
inline int readint(){
int a = 0; char c = getchar(), f = 1;
for(; c<'0'||c>'9'; c=getchar())
if(c == '-') f = -f;
for(; '0'<=c&&c<='9'; c=getchar())
a = (a<<3)+(a<<1)+(c^48);
return a*f;
}
inline void writeint(int_ x){
if(x > 9) writeint(x/10);
putchar((x-x/10*10)^48);
}
const int_ infty = (1ll<<60)-1;
const int MaxN = 100005;
const int MaxK = 21;
int_ dp[2][MaxN]; int fr;
int cnt[MaxN], a[MaxN]; int_ sum;
void solve(int l,int r,int L,int R){
//printf("solve %d %d %d %d\n",l,r,L,R);
if(l > r) return ;
int mid = (l+r+1)>>1;
int_ cost = sum; int p = 0;
dp[fr^1][mid] = infty;
for(int i=mid; i>=L; --i){
cost += (cnt[a[i]] ++);
if(i == l && R < l){
i = R+1; continue;
}
if(dp[fr][i-1]+cost < dp[fr^1][mid]){
dp[fr^1][mid] = dp[fr][i-1]+cost;
p = i; // record transfer
}
}
for(int i=mid; i>=L; --i){
-- cnt[a[i]]; // clear
if(i == l && R < l){
i = R+1; continue;
}
}
if(p < l) // add interval
for(int i=min(R,l-1); i>p; --i)
sum += (cnt[a[i]] ++);
solve(l,mid-1,L,p);
if(p < l) // restore
for(int i=min(R,l-1); i>p; --i)
sum -= (-- cnt[a[i]]);
if(R < mid+1) // add interval
for(int i=max(l,R+1); i<=mid; ++i)
sum += (cnt[a[i]] ++);
solve(mid+1,r,p,R);
if(R < mid+1) // restore all
for(int i=max(l,R+1); i<=mid; ++i)
sum -= (-- cnt[a[i]]);
}
int main(){
int n = readint(), k = readint();
for(int i=1; i<=n; ++i){
a[i] = readint();
dp[0][i] = infty;
}
for(int j=1; j<=k; ++j)
fr = (j&1)^1, solve(j,n,1,n);
printf("%lld\n",dp[k&1][n]);
return 0;
}
后记
双倍经验,只要是凸函数就做完了。