[CF908G]New Year and Original Order

220 篇文章 2 订阅
4 篇文章 0 订阅

题目

传送门 to luogu

思路

数位 d p \tt dp dp 难倒英雄汉 😭

我们有两类思路:直接填数字,计算对应的 f f f 之和;对于每个 f f f,计算其原数的数量,然后统计权值。哪一个更好呢?

事实上都不好。第一个非常难进行,因为 f f f 的变化很大;第二个的复杂度较高,因为方案数不容易计算。可以做到 O ( 1 0 2 n 3 ) \mathcal O(10^2n^3) O(102n3) 是真的。如果你推生成函数,也可以推出 O ( 10 n log ⁡ n ) \mathcal O(10n\log n) O(10nlogn) 的做法。 l l s w    o r z    o r z    o r z {\rm llsw}\;orz\;orz\;orz llsworzorzorz

所以这里有一个神来之笔:每种数字分开算贡献。然后第一种思路就可以做了。很简单的道理:如果下一个数字比 d d d 大,那么所有已有的 d d d f f f 中都会前进一位,也就是 × 10 \times 10 ×10;如果小,则没有任何影响。如果恰好是 d d d 呢?

再引入一个 g ( i ) g(i) g(i) 表示,对于所有已经有了 i i i 个数位的数字,如果下一个数字是 d d d,其在 f f f 中的权值(即 1 0 ? × d 10^{?}\times d 10?×d )的和。与 f f f 类似,可以直接递推,即
g ( i ) = d ⋅ g ( i − 1 ) + ( 9 − d ) ⋅ 10 ⋅ g ( i − 1 ) + g ( i − 1 ) g(i)=d\cdot g(i-1)+(9-d)\cdot 10\cdot g(i-1)+g(i-1) g(i)=dg(i1)+(9d)10g(i1)+g(i1)

我们认为新加入的 d d d 在所有已有的 d d d 的最后,所以这一位是 d d d 不会让 g g g 的值变化。然后你可以写出
f ( i ) = d ⋅ f ( i − 1 ) + ( 9 − d ) ⋅ 10 ⋅ f ( i − 1 ) + [ 10 ⋅ f ( i − 1 ) + d ⋅ g ( i − 1 ) ] f(i)=d\cdot f(i-1)+(9-d)\cdot 10\cdot f(i-1)\\+[10\cdot f(i-1)+d\cdot g(i-1)] f(i)=df(i1)+(9d)10f(i1)+[10f(i1)+dg(i1)]

由于有点长,我打了个换行。初值是 g ( 0 ) = 1 g(0)=1 g(0)=1,即没有数字。

具体的代码,再加上一个 0 / 1 0/1 0/1 表示是否顶住上界就行。复杂度 O ( B n ) \mathcal O(Bn) O(Bn)(这里 B = 10 B=10 B=10 表示进制)。

代码

由于分类讨论比较麻烦,我们可以舍弃常数的优秀。记住:如果不是乱搞骗分,正确性比复杂度更重要。

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long int_;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}

const int Mod = 1e9+7;
const int MaxN = 705;
int f[MaxN][2], g[MaxN][2];
int num[MaxN], n;
int solve(int d){
	memset(g,0,(n+1)*2<<2);
	memset(f,0,(n+1)*2<<2);
	g[0][0] = 1; int_ v;
	for(int i=1; i<=n; ++i)
	for(int j=0; j<10; ++j)
	for(int p=j>num[i]; p<2; ++p){
		v = g[i-1][p]*((j>d)?10ll:1);
		g[i][p|(j<num[i])] = (v+
			g[i][p|(j<num[i])])%Mod;
		
		v = f[i-1][p]*((j>=d)?10ll:1);
		if(j == d) v += 1ll*g[i-1][p]*d;
		f[i][p|(j<num[i])] = (v+
			f[i][p|(j<num[i])])%Mod;
	}
	return f[n][1];
}

char str[MaxN];
int main(){
	scanf("%s",str+1);
	n = strlen(str+1);
	for(int i=1; i<=n; ++i)
		num[i] = str[i]-'0';
	++ num[n]; int ans = 0;
	for(int i=1; i<=9; ++i)
		ans = (ans+solve(i))%Mod;
	printf("%d\n",ans);
	return 0;
}

不过嘛,精益求精,我也写了一个真正 O ( B n ) \mathcal O(Bn) O(Bn) 的,仅供参考。也确实跑得快。

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long int_;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}

const int Mod = 1e9+7;
const int MaxN = 705;
int num[MaxN], n;
int solve(int d){
	int_ g0 = 1, f0 = 0, g1 = 0, f1 = 0;
	for(int i=1,t; i<=n; ++i){
		/* one to one */ ;
		f1 = ((100-9*d)*f1+d*g1)%Mod;
		g1 = (91-9*d)*g1%Mod;
		/* zero to one */ ;
		f1 += (t = min(num[i],d))*f0%Mod;
		if(d < num[i]) f1 += d*g0%Mod;
		f1 += (num[i]-t)*10*f0%Mod;
		g1 += (t = min(num[i],d+1))*g0%Mod;
		g1 += (num[i]-t)*10*g0%Mod;
		/* zero to zero */ ;
		f0 = ( f0*((num[i]<d)?1:10)+
			(num[i]==d)*d*g0 )%Mod;
		g0 = g0*((num[i]>d)?10:1)%Mod;
	}
	return f1%Mod;
}

char str[MaxN];
int main(){
	scanf("%s",str+1);
	n = strlen(str+1);
	for(int i=1; i<=n; ++i)
		num[i] = str[i]-'0';
	++ num[n]; int ans = 0;
	for(int i=1; i<=9; ++i)
		ans = (ans+solve(i))%Mod;
	printf("%d\n",ans);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值