[USACO21FEB]Minimizing Edges P

122 篇文章 0 订阅
89 篇文章 0 订阅

题目

传送门 to luogu

思路

这是好题啊。我绞尽脑汁才得到的这个做法。不知道是不是已广为流传了 😭

首先转化一下题意。这个 f G ( a , b ) f_G(a,b) fG(a,b) 的求法,想必大家是很熟悉了。求出 1 1 1 a a a 的长度为奇数的最短路,与长度为偶数的最短路。为啥要奇偶性分类呢?因为一条边可以走多次,那么在一条边上 “反复横跳” 一次,就会让路径长度增大 2 2 2

那么,比最短路更短的,显然不可能;不短于最短路的,通过 “反复横跳” 总能实现。所以题目的意思就是保证最短路不变。

怎么表示奇长度和偶长度呢?可以对每个点建立一个虚点。或者说,其实是 2 n 2n 2n 个 “虚点”,每个点代表一个 d p \tt dp dp 状态 f ( x , 0 / 1 ) f(x,0/1) f(x,0/1) 表示到达 x x x 的 偶数 / / / 奇数 长度的最短路。将原图的边 ⟨ x , y ⟩ \langle x,y\rangle x,y 变成 ⟨ x , y ′ ⟩ \langle x,y'\rangle x,y ⟨ y , x ′ ⟩ \langle y,x'\rangle y,x 就好了。

跑一次最短路即可。得到一个最短路图。那么每个点在新图上,都必须选择一个前驱节点,才能保证 d i s dis dis 不变。(由于已经建立虚点,只需要保证到每个点的最短路都不变,不再有奇偶性的考虑。)

考虑到一个简单的事实:如果一条边不是用来满足 d i s dis dis 的关系的,那完全可以删掉。所以,每个点 只选择一个前驱——多选无益。同层点的连边就更是无用了!

是不是每个前驱都可以选择呢?其实并不是。但是 至少有一个合法的前驱,那就是原图的最短路图中的那个。所以说,我们 可以决定某些点的前驱,剩下的点就直接选择这个合法前驱即可。毕竟这个前驱也是必然选的。

你可能认为,答案不就是点数 − - 1 1 1 么?因为除去 1 1 1 不选择前驱,其他点都选择了一个。那你就太天真了!别忘了我们有虚点。边 ⟨ x , y ⟩ \langle x,y\rangle x,y ⟨ x ′ , y ′ ⟩ \langle x',y'\rangle x,y 本质上是同一条边!

称形如 ⟨ x , y ⟩ \langle x,y\rangle x,y ⟨ x ′ , y ′ ⟩ \langle x',y'\rangle x,y 的一对边互为 “对称边” 。当然 ⟨ x , y ′ ⟩ \langle x,y'\rangle x,y ⟨ x ′ , y ⟩ \langle x',y\rangle x,y 也是一样。那么答案应当是
∣ V ∣ − 1 − ∣ E s y m m e t r y ∣ |V|-1-|E_{symmetry}| V1Esymmetry
即,点数减一再减去 “对称边” 数量。由于 ∣ V ∣ − 1 |V|-1 V1 是固定的,我们 只需要最大化 “对称边” 的数量

不妨设 x , x ′ x,x' x,x 在最短路图中的 d i s dis dis 分别是 l , r l,r l,r(下简记为 [ l x , r x ] [l_x,r_x] [lx,rx] )。由于 x , x ′ x,x' x,x 究竟谁是虚点并不重要,规定 l < r l<r l<r(即 x ′ x' x d i s dis dis 大于 x x x 的)。显然 r − l r-l rl 为奇数,这是定义决定的。

不妨 钦定 “对称边”。比如,我们假定 ⟨ x , y ⟩ \langle x,y\rangle x,y 是作为对称边出现了的。那么 y ′ y' y 在最短路图中的 d i s dis dis x ′ x' x 相邻, y y y x x x 也相邻。即
l y = l x ± 1 ,    r y = r x ± 1 l_y=l_x\pm 1,\;r_y=r_x\pm 1 ly=lx±1,ry=rx±1
否则就没有连边了嘛!这四类情况本质上只有两种:包含与相交。

  • 包含型:如果 l y = l x + 1 ,    r y = l x − 1 l_y=l_x+1,\;r_y=l_x-1 ly=lx+1,ry=lx1,那我们可以让 p r e ( y ) = x ,    p r e ( x ′ ) = y ′ pre(y)=x,\;pre(x')=y' pre(y)=x,pre(x)=y 使得此处出现一个对称边。即:可以同时钦定 y , x ′ y,x' y,x 的前驱,出现一条对称边
  • 相交型:如果 l y = l x − 1 ,    r y = r x − 1 l_y=l_x-1,\;r_y=r_x-1 ly=lx1,ry=rx1,那我们可以让 p r e ( x ) = y ,    p r e ( x ′ ) = y ′ pre(x)=y,\;pre(x')=y' pre(x)=y,pre(x)=y 使得此处出现一个对称边。即:可以同时钦定 x , x ′ x,x' x,x 的前驱,出现一条对称边

显然每个 y y y x x x 的要求是不一样的。也就是说 x x x 只能满足某个 y y y 的要求。也就是说,相当于一个匹配。那么 “可以同时钦定二者,出现一条对称边” 就直接连边就好。

问题变为了一般图的最大匹配?好像并不是一般图。注意到上面两种连边方式都是带 ′ ' 的向不带 ′ ' 的连边。所以 这是一个二分图

考试的时候,我以为到这里就结束了,就开始敲 d i n i c \tt dinic dinic,最终拿到了 5 5 5 分的高分。这是为什么呢?

原来有一个害人精 r x = l x + 1 r_x=l_x+1 rx=lx+1 的情况。这时候, l y , r y l_y,r_y ly,ry 的大小关系有了微妙的变化,并且 包含型 消失了。它消失了不要紧,重要的是,如果 l x = l y = r x − 1 = r y − 1 l_x=l_y=r_x-1=r_y-1 lx=ly=rx1=ry1 的话,需要连边 x ′ , y ′ x',y' x,y,这导致它不再是一个二分图了!虽说这不是导致我拿五分的原因

所以我们再想想这个图。枚举了所有四种情况,你会发现, x x x 的连边只有两条,一个是 ⟨ x , x ′ ⟩ \langle x,x'\rangle x,x,另一个是 ⟨ x , y ′ ⟩ \langle x,y'\rangle x,y(满足 r y = r x + 1 r_y=r_x+1 ry=rx+1 l y = l x − 1 l_y=l_x-1 ly=lx1)。类似的, x ′ x' x 的连边也只有两条。你会发现, x ′ x' x 只走向更小的区间 x x x 只走向更大的区间。而且二者走向的区间只有一种(可能多个,但是必定是同一种)。

这是什么呀?这是 一条链!由于同种区间的连边情况相同,可以 “缩点”,让点权为其数量。缩点后,这样一个东西是一条单链:从 x x x 走到区间更大的 y ′ y' y,然后走到 y y y,然后走到更大的 z ′ z' z,以此类推。

一条链怎么求最大匹配?当然是直接贪心啦!从某一端开始,尽可能多的匹配。正确性容易证明:若某个端点的点权没用尽,那么倒数第二个必须用尽;将它的匹配撤销,改成与链首匹配,不会更劣。

再回看刚刚那个 x ′ x' x y ′ y' y 的连边。其实就是自环嘛!最终剩下的点权是 s s s,则可以自己与自己匹配 ⌊ s 2 ⌋ \lfloor{s\over 2}\rfloor 2s 嘛!

这张图是一个 “洋葱链森林”(为什么叫洋葱链呢?因为它总体上是链,但顶端很多自环,像一个洋葱),因为有父子关系的区间恰好满足 l + r l+r l+r 为定值。求出所有 l , r l,r l,r 后,按照 l + r l+r l+r 分类即可。

分析一下复杂度。第一部分,建虚点,求最短路,这是 O ( n ) \mathcal O(n) O(n) 的。第二部分,按照 l + r l+r l+r 分类后,“建树”(我们已经知道了匹配规则,可以不用真正地建立树),这当然也是 O ( n ) \mathcal O(n) O(n) 的——虽然我们有对 r − l r-l rl 排序的过程(方便找父子关系),但是我们可以在分类前就先桶排解决。总复杂度自然是线性的。

还不懂就只能看代码了。由于这个做法是自己 y y yy yy 的,没得到验证,打代码的时候还是挺小心翼翼的,注释也有在写。

代码

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;
typedef pair<int,int> PII;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}

const int MaxN = 100005;
const int MaxM = 200005;
/** man-made queue */
namespace queue{
	int q[MaxN<<1];
	typedef int* iterator;
	iterator begin(){ return q; }
}
/** in order to get dis(dep) */
namespace Graph{
	struct Edge{
		int to, nxt; Edge(){}
		Edge(int T,int N){
			to = T, nxt = N;
		}
	};
	Edge e[MaxM<<2];
	int cntEdge, head[MaxN<<1];
	void addEdge(int a,int b){
		e[cntEdge] = Edge(b,head[a]);
		head[a] = cntEdge ++;
		e[cntEdge] = Edge(a,head[b]);
		head[b] = cntEdge ++;
	}
	int dep[MaxN<<1];
	void input(int n,int m){
		for(int i=1; i<=2*n; ++i)
			dep[i] = head[i] = -1;
		cntEdge = 0; // several cases
		for(int i=1,a,b; i<=m; ++i){
			a = readint(), b = readint();
			addEdge(a,b+n), addEdge(a+n,b);
		}
	}
	void scan(){
		queue::iterator fro = queue::begin();
		queue::iterator bac = queue::begin();
		*(bac ++) = 1; dep[1] = 0;
		for(; fro!=bac; ++fro)
		for(int i=head[*fro]; ~i; i=e[i].nxt)
			if(dep[e[i].to] == -1){
				dep[e[i].to] = dep[*fro]+1;
				*(bac ++) = e[i].to;
			}
	}
}

int n, m;
void input(){
	n = readint(), m = readint();
	Graph::input(n,m), Graph::scan();
}

int ans; // maximum matches
# define DDQ vector<PII>::iterator
/** @return the remain value on FIRST node */
int eliminateChain(const DDQ &bg,const DDQ &ed){
	int used = 0;
	for(DDQ i=ed; i!=bg; --i){
		used = min(i->second-used,(i-1)->second); // match all
		ans += used; // accumulate
	}
	return bg->second-used;
}
# undef DDQ

bool vis[MaxN<<1]; // if there exist [l-1,r-1] (indexed by r-l+1)
vector<int> tree[MaxN<<1]; // classify by l+r
vector<PII> len_cnt; // first:len  second:cnt(val)
vector<int> trash; // to clear array vis
int getOnion(){
	using Graph::dep; // for convenient
	int tot = 0; // useful nodes
	for(int i=1; i<=n; ++i){
		int l = dep[i], r = dep[i+n];
		if(l > r) swap(l,r); // s.t. l < r
		if(l != -1) // useful nodes
			tree[l+r].push_back(r-l+1);
		tot += (l != -1) + (r != -1);
	}
	ans = 0; // several test cases
	trash.clear(); // good habit
	memset(vis+1,0,n<<1);
	for(int i=1; i<=2*n; i+=2){
		len_cnt.clear();
		vector<int> &v = tree[i];
		sort(v.begin(),v.end());
		int len = v.size();
		for(int p=0,j=p; p!=len; p=j){
			while(j != len && v[j] == v[p])
				++ j; // [p,i) keep the same
			/* two nodes: x and x' */ ;
			len_cnt.push_back(make_pair(v[p],j-p));
			len_cnt.push_back(make_pair(v[p],j-p));
		}
		len = len_cnt.size(); // v is useless now
		for(int p=0,j=p; p!=len; p=++j){
			while(j+1 != len)
				if(j&1){ // become longer
					if(len_cnt[j+1].first == len_cnt[j].first+2)
						++ j; else break;
				}
				else{ // inner edge
					if(vis[len_cnt[j].first])
						++ j; else break;
				}
			int rest = eliminateChain(len_cnt.begin()+p,len_cnt.begin()+j);
			if(!p && len_cnt[0].first == 2)
				ans += (rest>>1); // self-loop
		}
		while(!trash.empty()){
			vis[trash.back()] = false;
			trash.pop_back();
		}
		while(!len_cnt.empty()){
			trash.push_back(len_cnt.back().first);
			len_cnt.pop_back();
			vis[trash.back()] = true; 
		}
	}
	return tot-1-ans;
}

void solve(){
	for(int i=1; i<=2*n; i+=2)
		tree[i].clear();
	printf("%d\n",getOnion());
}

int main(){
	for(int T=readint(); T; --T)
		input(), solve();
	return 0;
}

后记

先吐槽一下:虽然肝这道题耗费了很多时间,但是真的挺爽的……然而教练显然很不爽

再贴一个正经题解的连接,你会发现:它的 h ( x ) h(x) h(x) 定义不就是我的 [ l x , r x ] [l_x,r_x] [lx,rx] 吗?殊途同归啊!让人想起了 脱二十钛1 的名言:

A C \tt AC AC 的代码都是一样的, W A / R E / T L E / M L E \tt WA/RE/TLE/MLE WA/RE/TLE/MLE 的代码各有各的「超级高水平」操作。(看 C B A \rm CBA CBA 的应该懂)


  1. 鹅国著名作家,代表作有《栈争 & \& & 和平》。 ↩︎

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值