[ZROI2021]整数对

280 篇文章 1 订阅
137 篇文章 1 订阅
本文探讨了一个关于非负整数对(x,y)的计数问题,受限于y≤p/q·x。通过将无理数转换为类欧几里得问题,利用Stern-Brocot树进行有理数逼近,解决了如何找到最接近无理数的有理数比例。作者介绍了关键的算法思路和代码实现,展示了如何利用递归和倍增法在O(log n(log n + log q))复杂度下解决此问题。
摘要由CSDN通过智能技术生成

题目

题目概要
求满足如下条件的非负整数 ⟨ x , y ⟩ \langle x,y\rangle x,y 的个数:
x ≤ n ,    y ≤ p / q ⋅ x x\le n,\;y\le\sqrt{p/q}\cdot x xn,yp/q x

数据范围与提示
多组数据, T ≤ 1 0 5 T\le 10^5 T105 p , q ≤ 1 0 3 p,q\le 10^3 p,q103,但是 n ≤ 1 0 9 n\le 10^9 n109

思路

看上去非常像类欧几里得啊!然而,如果用同样的方法去推导,就会推出无数个 O ( n ) \mathcal O(n) O(n) 的做法……

为啥无理数没法消除呢?因为它不能像整数那样,消去一个整数部分之后,剩下的仍然是有理数。所以说很多方法都行不通。

如果你还做过等比数列三角形,你就会往这个方向想,然后又得到了零分的高分

现在来瞟一眼,正解是个啥……显然式子等价于
n + 1 + ∑ i = 1 n ∑ j = 1 + ∞ [ j ≤ p / q ⋅ i ] n+1+\sum_{i=1}^{n}\sum_{j=1}^{+\infty}\left[j\le\sqrt{p/q}\cdot i\right] n+1+i=1nj=1+[jp/q i]
里面那个真值括号,可以移项得到 j i ≤ p / q \frac{j}{i}\le\sqrt{p/q} ijp/q 。那么,我们 用一个有理数逼近这个无理数,就可以转化为类欧了。具体而言,我们应当找到分母不超过 n n n 的所有分数中,最接近 p / q \sqrt{p/q} p/q 的一个(不然就会统计漏)。

这件事听上去很有道理,又好像不容易进行。所以 H a n d I n D e v i l \sf HandInDevil HandInDevil 用这个方法把它秒了的时候,我还不太相信。因为 分母设置为 1 0 9 10^9 109 不意味着最接近 p / q \sqrt{p/q} p/q 。可能有比它略大一点的分数,并且分母和分子都更小,更接近 p / q \sqrt{p/q} p/q 呢?

需要利用 S t e r n - B r o c o t \rm Stern\text-Brocot Stern-Brocot进行有理逼近。根据已有理论,我们知道只会有 O ( log ⁡ n ) \mathcal O(\log n) O(logn) 条 “链”,用 O ( log ⁡ n + log ⁡ p ) \mathcal O(\log n+\log p) O(logn+logp) 的倍增来跳跃每一条链。

如果是有理数,真值括号变为 [ j i ≤ a b ] [\frac{j}{i}\le \frac{a}{b}] [ijba] 时,即有 [ j ≤ a i b ] [j\le \frac{ai}{b}] [jbai],那么我们只需要求
n + 1 + ∑ i = 1 n ⌊ a ⋅ i b ⌋ n+1+\sum_{i=1}^{n}\left\lfloor\frac{a\cdot i}{b}\right\rfloor n+1+i=1nbai
这就是类欧了。复杂度 O [ T log ⁡ n ( log ⁡ n + log ⁡ q ) ] \mathcal O[T\log n(\log n+\log q)] O[Tlogn(logn+logq)]

代码

其实我有些怠惰——按道理,分子最高可达 n p / q n\sqrt{p/q} np/q ,所以倍增应该把 j j j 设置大一点。但是我还是开的 30 30 30 😄

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long int_;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
inline void writeint(__int128 x){
	if(x > 9) writeint(x/10);
	putchar((char)(x-x/10*10)^48);
}

bool check(int p,int q,int_ x,int_ y){
	return __int128(x)*x*q <= __int128(y)*y*p;
}

int_ son, mom; int threshold;
void dfs(int p,int q,int_ lx=0,int_ ly=1,int_ rx=1,int_ ry=0){
	int_ mx = lx+rx, my = ly+ry;
	if(my > threshold) return ;
	if(check(p,q,mx,my)){
		for(int j=30; ~j; --j)
			if(my+(1<<j)*ry <= threshold)
			if(check(p,q,mx+(1<<j)*rx,my+(1<<j)*ry))
				mx += (1<<j)*rx, my += (1<<j)*ry;
		son = mx, mom = my;
		return dfs(p,q,mx,my,rx,ry);
	}
	for(int j=30; ~j; --j)
		if(my+(1<<j)*ly <= threshold)
		if(!check(p,q,mx+(1<<j)*lx,my+(1<<j)*ly))
			mx += (1<<j)*lx, my += (1<<j)*ly;
	return dfs(p,q,lx,ly,mx,my);
}
void approximation(int p,int q,int n){
	son = 0, mom = 1; // no number exist
	threshold = n; dfs(p,q);
}

__int128 likeGcd(__int128 a,__int128 b,__int128 c,__int128 n){
	if(n == 0) return 0; // nothing left
	__int128 m = ((n-1)*a+b)/c;
	if(a >= c || b >= c){
		__int128 f = likeGcd(a%c,b%c,c,n);
		f += (a/c)*(n*(n-1)>>1);
		f += (b/c)*n; return f;
	}
	else{
		if(!a) return 0; // since b < c
		return m*n-likeGcd(c,c-b+a-1,a,m);
	}
}

int main(){
	int T = readint(), p, q, n;
	while(T --){
		p = readint(), q = readint();
		n = readint();
		approximation(p,q,n);
		__int128 ans = likeGcd(son,son,mom,n);
		writeint(ans+n+1), putchar('\n');
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值