[ARC116C]Multiple Sequences

280 篇文章 1 订阅
本文介绍了一种在AtCoder限时竞赛中快速求解组合问题的方法,利用质因数分解和递推思想,将时间复杂度从O(mlog⁡nlog⁡m)降低到O(mlog⁡log⁡m)。通过枚举质因数和计数方案,展示了高效的算法实现和代码片段。
摘要由CSDN通过智能技术生成

题目

传送门 to AtCoder

思路

我直接联想到狄利克雷卷积,因为能过,就直接打了(毕竟这种限时赛嘛,快点做很重要)。当然那是 O ( m log ⁡ n log ⁡ m ) \mathcal O(m\log n\log m) O(mlognlogm) 的。

说具体点。考虑 d p dp dp 嘛。那么每次转移相当于 f a b ← f a ⋅ I b f_{ab}\leftarrow f_a\cdot I_b fabfaIb 其中 I I I 为常函数 1 1 1,即 I x = 1 I_x=1 Ix=1 。这就是狄利克雷卷积嘛。

没想到,有一个更快的做法。枚举 a n a_n an 之后,单独考虑每个质因数,然后考虑次数每次增加 1 1 1 的位置。一共 n n n 个位置,每个位置可以放若干个 “加一”,这个质因数的次数是 k k k,相当于 n n n 个自然数相加为 k k k,所以方案数是
( k + n − 1 n − 1 ) {k+n-1\choose n-1} (n1k+n1)

我们需要枚举每个数的质因数,这是 O ( m log ⁡ log ⁡ m ) \mathcal O(m\log\log m) O(mloglogm) 的。由于 n − 1 n-1 n1 不变,我们计算 ( k + n − 1 ) ! k ! ⋅ ( n − 1 ) ! \frac{(k+n-1)!}{k!\cdot (n-1)!} k!(n1)!(k+n1)! 显然可以 O ( k = log ⁡ m ) \mathcal O(k=\log m) O(k=logm) 的递推,于是总复杂度是
O ( m log ⁡ log ⁡ m ) \mathcal O(m\log\log m) O(mloglogm)

哪怕 n n n 开到 1 0 9 10^9 109 也没问题(只要有模数),因为真的是完全跟 n n n 无关。

代码

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
# define rep(i,a,b) for(int i=(a); i<=(b); ++i)
# define drep(i,a,b) for(int i=(a); i>=(b); --i)
typedef long long int_;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
inline void writeint(int_ x){
	if(x > 9) writeint(x/10);
	putchar((x-x/10*10)^48);
}

const int MaxM = 200005;
const int Mod = 998244353;

int nxt[MaxM], num[MaxM];
vector<int> primes;
bool isPrime[MaxM];
void sieve(int n){
	memset(isPrime+2,1,n-1);
	for(int i=2,len=0; i<=n; ++i){
		if(isPrime[i]){
			primes.push_back(i), ++ len;
			num[i] = nxt[i] = 1;
		}
		for(int j=0; j<len&&primes[j]<=n/i; ++j){
			isPrime[i*primes[j]] = false;
			if(i%primes[j] == 0){
				num[i*primes[j]] = num[i]+1;
				nxt[i*primes[j]] = nxt[i];
				break;
			}
			num[i*primes[j]] = 1;
			nxt[i*primes[j]] = i;
		}
	}
}

int c[MaxM], inv[MaxM];
int main(){
	int n = readint(), m = readint();
	sieve(m); inv[1] = 1;
	rep(i,2,m) inv[i] = (0ll+Mod-Mod/i)*inv[Mod%i]%Mod;
	for(int i=c[0]=1; i<=m; ++i)
		c[i] = 1ll*c[i-1]*(i+n-1)%Mod*inv[i]%Mod;
	int ans = 1; // when a_n = 1
	for(int i=2; i<=m; ++i){
		int now = 1, x = i;
		for(; x!=1; x=nxt[x])
			now = 1ll*now*c[num[x]]%Mod;
		ans = (ans+now)%Mod;
	}
	printf("%d\n",ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值