前言
在 2021 / 10 / 15 2021/10/15 2021/10/15 这一天的上午,钠悴 D D G \sf DDG DDG 闪击 O n e I n D a r k \sf OneInDark OneInDark,在毫无准备的情况下, O n e I n D a r k \sf OneInDark OneInDark 瞬间就被「随切」秒杀了!
随后 D D G \sf DDG DDG 一路高歌猛进,在 39 s 39\rm s 39s 内拿下了号称 “地表最硬马桶” 的 H a n d I n D e v i l \sf HandInDevil HandInDevil 。
接下来 D D G \sf DDG DDG 又对 p r i n c i p a l \rm principal principal 发动突然袭击,护校战争爆发!在全校同学的顽强抵抗下,取得了首都 D D 2023 \rm DD2023 DD2023 保卫战的伟大胜利,成为了第二次反狗战争的转折点。
此时, R a i n y b u n n y \sf Rainybunny Rainybunny 成功登陆撤硕海滩,与 p r i n c i p a l \rm principal principal 一同击退了 D D G \sf DDG DDG 。第二次反狗战争结束了,但是对 O n e I n D a r k \sf OneInDark OneInDark 带来的伤害是不可估量的, O n e I n D a r k \sf OneInDark OneInDark 与全世界所有爱好和平的人类振臂高呼:危险的黑暗幽灵,不要再在人们头顶飘荡!
题目
思路
一上午全去推结论去了。结果旁边的所有碳基生物都说:“显而易见,一目了然。”
首先考虑把问题放在数轴上。——其实最初我在想是不是什么匹配,网络流啥的……然后又考虑 d p \tt dp dp,发现不咋会……
那么此时 “不适度” 就是数轴上一个点移动到区间内走过的距离。相当于把 2 n 2n 2n 个点移动到别的位置,然后可以选择区间内两个点并移除,最终可以移除所有点。
第一个 o b s e r v a t i o n \rm observation observation 是,点是没有区别的。所以两个点的移动路径是不会 “交叉” 的,也就是说,靠右的点所移动到的位置也更靠右。第二个 o b s e r v a t i o n \rm observation observation 是,桌子对应的区间越大越好,也就是说桌子对应的区间不会有包含关系。
于是有了第一个性质:总是身高相邻的同学坐在同一张桌子旁。为什么呢?这就需要分析了。不妨设 a ⩽ b ⩽ c ⩽ d a\leqslant b\leqslant c\leqslant d a⩽b⩽c⩽d 是四个同学的身高,四个人在数轴上走到的位置依次是 x ⩽ y ⩽ z ⩽ w x\leqslant y\leqslant z\leqslant w x⩽y⩽z⩽w 。
- a a a 和 d d d 坐在 i i i 号桌子旁,而 b b b 和 c c c 坐在 j j j 号桌子旁。数学公式警告!
上面的条件等价于
x
,
w
∈
[
L
i
,
R
i
]
x,w\in[L_i,R_i]
x,w∈[Li,Ri] 而
y
,
z
∈
[
L
j
,
R
j
]
y,z\in[L_j,R_j]
y,z∈[Lj,Rj] 。首先
y
,
z
∈
[
x
,
w
]
⫅
[
L
i
,
R
i
]
y,z\in[x,w]\subseteqq[L_i,R_i]\\
y,z∈[x,w]⫅[Li,Ri]
而
y
∈
[
x
,
w
]
y\in[x,w]
y∈[x,w] 且
y
∈
[
L
j
,
R
j
]
y\in[L_j,R_j]
y∈[Lj,Rj],说明
[
x
,
w
]
∩
[
L
j
,
R
j
]
[x,w]\cap[L_j,R_j]
[x,w]∩[Lj,Rj] 非空。而
[
x
,
w
]
[x,w]
[x,w] 不能包含
[
L
j
,
R
j
]
[L_j,R_j]
[Lj,Rj],否则
[
L
i
,
R
i
]
⫆
[
x
,
w
]
⫆
[
L
j
,
R
j
]
[L_i,R_i]\supseteqq[x,w]\supseteqq[L_j,R_j]
[Li,Ri]⫆[x,w]⫆[Lj,Rj],与 observation 2
矛盾。所以
x
∈
[
L
j
,
R
j
]
∨
w
∈
[
L
j
,
R
j
]
x\in[L_j,R_j]\vee w\in[L_j,R_j]
x∈[Lj,Rj]∨w∈[Lj,Rj]
譬如
x
∈
[
L
j
,
R
j
]
x\in[L_j,R_j]
x∈[Lj,Rj],那么
x
,
y
∈
[
L
j
,
R
j
]
x,y\in[L_j,R_j]
x,y∈[Lj,Rj] 而
z
,
w
∈
[
L
i
,
R
i
]
z,w\in[L_i,R_i]
z,w∈[Li,Ri],即可以
a
,
b
a,b
a,b 坐在桌子
j
j
j 旁、
c
,
d
c,d
c,d 坐在桌子
i
i
i 旁。
若是 w ∈ [ L j , R j ] w\in[L_j,R_j] w∈[Lj,Rj],那么 z , w ∈ [ L j , R j ] z,w\in[L_j,R_j] z,w∈[Lj,Rj] 而 x , y ∈ [ L i , R i ] x,y\in[L_i,R_i] x,y∈[Li,Ri],即可以 a , b a,b a,b 坐在桌子 i i i 旁、 c , d c,d c,d 坐在桌子 j j j 旁。
- a a a 和 c c c 坐在 i i i 号桌子旁,而 b b b 和 d d d 坐在 j j j 号桌子旁。
这个比较简单,由 y ∈ [ x , z ] ⫅ [ L i , R i ] y\in[x,z]\subseteqq[L_i,R_i] y∈[x,z]⫅[Li,Ri] 且 z ∈ [ y , w ] ⫅ [ L j , R j ] z\in [y,w]\subseteqq[L_j,R_j] z∈[y,w]⫅[Lj,Rj] 知可以 a , b a,b a,b 坐 i i i 号桌子、 c , d c,d c,d 坐在 j j j 号桌子旁。
证毕,证毕,证毕。重要的事说三遍,不重要的事也可以说三遍。
这样可以解决 m = 1 m=1 m=1 的情况,但是又怎么拓展呢?于是考虑桌子的选用。事实上,依次选用左端点递增的桌子 就好了。它的证明也是类似的,而且更简单。
-
a
,
b
a,b
a,b 走到
x
,
y
∈
[
L
i
,
R
i
]
x,y\in[L_i,R_i]
x,y∈[Li,Ri],而
c
,
d
c,d
c,d 走到
z
,
w
∈
[
L
j
,
R
j
]
z,w\in[L_j,R_j]
z,w∈[Lj,Rj],满足
a
⩽
b
⩽
c
⩽
d
a\leqslant b\leqslant c\leqslant d
a⩽b⩽c⩽d 然而
L
i
>
L
j
L_i>L_j
Li>Lj 。根据
observation 2
同时也满足 R i > R j R_i>R_j Ri>Rj 。
由于 z , w ⩾ y ⩾ L i z,w\geqslant y\geqslant L_i z,w⩾y⩾Li 且 z , w ⩽ R j < R i z,w\leqslant R_j<R_i z,w⩽Rj<Ri 可知 z , w ∈ [ L i , R i ] z,w\in[L_i,R_i] z,w∈[Li,Ri] 。
由于 x , y ⩾ L i > L j x,y\geqslant L_i>L_j x,y⩾Li>Lj 且 x , y ⩽ z ⩽ R j x,y\leqslant z\leqslant R_j x,y⩽z⩽Rj 可知 x , y ∈ [ L j , R j ] x,y\in[L_j,R_j] x,y∈[Lj,Rj] 。
所以直接把 x , y x,y x,y 和 z , w z,w z,w 所对应的桌子互换,并不增加代价。证毕。
这说明什么呢?假如你买好了桌子,那么 任意一组的第 2 i − 1 2i-1 2i−1 名和第 2 i 2i 2i 名同学都是用的同一桌子。于是每个这样的 i i i 是一个独立的问题,只需要求出最优的那张桌子。
而根据前面的描述,决策是单调的。二分即可。时间复杂度 O ( n log m + n m + k log n + k log k ) \mathcal O(n\log m+nm+k\log n+k\log k) O(nlogm+nm+klogn+klogk) 。为什么没有额外的 log \log log 呢?因为我们已经用 O ( k log k ) \mathcal O(k\log k) O(klogk) 将桌子排序过了,就可以直接用类似双指针的方式求值(而不是 l o w e r _ b o u n d \rm lower\_bound lower_bound 现场查)。
代码
#include <cstdio>
#include <iostream>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
# define rep(i,a,b) for(int i=(a); i<=(b); ++i)
# define drep(i,a,b) for(int i=(a); i>=(b); --i)
typedef long long int_;
inline int readint(){
int a = 0, c = getchar(), f = 1;
for(; '0'>c||c>'9'; c=getchar())
if(c == '-') f = -f;
for(; '0'<=c&&c<='9'; c=getchar())
a = (a<<3)+(a<<1)+(c^48);
return a*f;
}
inline void writeint(int_ x){
if(x > 9) writeint(x/10);
putchar(int((x-x/10*10)^48));
}
const int MAXN = 200005;
struct Table{
int l, r;
bool operator < (const Table &t) const {
if(l != t.l) return l < t.l;
return r > t.r; // bigger
}
};
Table table[MAXN];
vector<int> a[MAXN];
int tmp[MAXN<<1], n, m, k;
int_ ans;
void solve(int l,int r,int ql,int qr){
if(l > r) return ; // empty
int mid = (l+r)>>1;
vector<int> &v = a[mid];
sort(v.begin(),v.end());
int lid = 0, rid = 0; int_ now_val = 0;
while(lid != (m<<1) && v[lid] < table[ql].l)
now_val += table[ql].l-v[lid], ++ lid;
while(rid != (m<<1) && v[rid] < table[ql].r)
now_val += table[ql].r-v[rid], ++ rid;
rep(i,lid,(m<<1)-1) now_val += v[i]-table[ql].l;
rep(i,rid,(m<<1)-1) now_val += v[i]-table[ql].r;
int best = ql; int_ best_val = (now_val >>= 1);
best_val -= m*int_(table[ql].r-table[ql].l);
for(int i=ql+1; i<=qr; ++i){
now_val += (lid-m)*int_(table[i].l-table[i-1].l);
now_val += (rid-m)*int_(table[i].r-table[i-1].r);
while(lid != (m<<1) && v[lid] < table[i].l)
now_val += table[i].l-v[lid], ++ lid;
while(rid != (m<<1) && v[rid] < table[i].r)
now_val += table[i].r-v[rid], ++ rid;
const int_ addend = m*int_(table[i].r-table[i].l);
if(now_val-addend < best_val)
best_val = now_val-addend, best = i;
}
ans += best_val; // current value
solve(l,mid-1,ql,best);
solve(mid+1,r,best,qr);
}
int main(){
m = readint(), n = readint();
k = readint();
rep(i,1,k){
table[i].l = readint();
table[i].r = readint();
}
sort(table+1,table+k+1);
for(int i=2,d=0; i<=k; ++i){
table[i] = table[i+d];
if(table[i].r <= table[i-1].r)
++ d, -- k, -- i; // reload
}
rep(i,1,m){
rep(j,1,n<<1) tmp[j] = readint();
sort(tmp+1,tmp+(n<<1)+1);
rep(j,1,n<<1) a[(j+1)>>1].push_back(tmp[j]);
}
solve(1,n,1,k);
printf("%lld\n",ans);
return 0;
}