[ROI2019]课桌

280 篇文章 1 订阅
本文详细探讨了一种二维区间调度问题的解决方案,通过观察和分析得出关键性质,利用单调性优化策略,实现了高效的算法,时间复杂度为O(nlogm+nm+klogn+klogk)。内容涉及数轴上的点移动、区间操作和二分查找等概念。
摘要由CSDN通过智能技术生成

前言

2021 / 10 / 15 2021/10/15 2021/10/15 这一天的上午,钠悴 D D G \sf DDG DDG 闪击 O n e I n D a r k \sf OneInDark OneInDark,在毫无准备的情况下, O n e I n D a r k \sf OneInDark OneInDark 瞬间就被「随切」秒杀了!

随后 D D G \sf DDG DDG 一路高歌猛进,在 39 s 39\rm s 39s 内拿下了号称 “地表最硬马桶” 的 H a n d I n D e v i l \sf HandInDevil HandInDevil

接下来 D D G \sf DDG DDG 又对 p r i n c i p a l \rm principal principal 发动突然袭击,护校战争爆发!在全校同学的顽强抵抗下,取得了首都 D D 2023 \rm DD2023 DD2023 保卫战的伟大胜利,成为了第二次反狗战争的转折点。

此时, R a i n y b u n n y \sf Rainybunny Rainybunny 成功登陆撤硕海滩,与 p r i n c i p a l \rm principal principal 一同击退了 D D G \sf DDG DDG 。第二次反狗战争结束了,但是对 O n e I n D a r k \sf OneInDark OneInDark 带来的伤害是不可估量的, O n e I n D a r k \sf OneInDark OneInDark 与全世界所有爱好和平的人类振臂高呼:危险的黑暗幽灵,不要再在人们头顶飘荡!

题目

传送门 to LOJ

思路

一上午全去推结论去了。结果旁边的所有碳基生物都说:“显而易见,一目了然。”

首先考虑把问题放在数轴上。——其实最初我在想是不是什么匹配,网络流啥的……然后又考虑 d p \tt dp dp,发现不咋会……

那么此时 “不适度” 就是数轴上一个点移动到区间内走过的距离。相当于把 2 n 2n 2n 个点移动到别的位置,然后可以选择区间内两个点并移除,最终可以移除所有点。

第一个 o b s e r v a t i o n \rm observation observation 是,点是没有区别的。所以两个点的移动路径是不会 “交叉” 的,也就是说,靠右的点所移动到的位置也更靠右。第二个 o b s e r v a t i o n \rm observation observation 是,桌子对应的区间越大越好,也就是说桌子对应的区间不会有包含关系。

于是有了第一个性质:总是身高相邻的同学坐在同一张桌子旁。为什么呢?这就需要分析了。不妨设 a ⩽ b ⩽ c ⩽ d a\leqslant b\leqslant c\leqslant d abcd 是四个同学的身高,四个人在数轴上走到的位置依次是 x ⩽ y ⩽ z ⩽ w x\leqslant y\leqslant z\leqslant w xyzw

  • a a a d d d 坐在 i i i 号桌子旁,而 b b b c c c 坐在 j j j 号桌子旁。数学公式警告!

上面的条件等价于 x , w ∈ [ L i , R i ] x,w\in[L_i,R_i] x,w[Li,Ri] y , z ∈ [ L j , R j ] y,z\in[L_j,R_j] y,z[Lj,Rj] 。首先
y , z ∈ [ x , w ] ⫅ [ L i , R i ] y,z\in[x,w]\subseteqq[L_i,R_i]\\ y,z[x,w][Li,Ri]
y ∈ [ x , w ] y\in[x,w] y[x,w] y ∈ [ L j , R j ] y\in[L_j,R_j] y[Lj,Rj],说明 [ x , w ] ∩ [ L j , R j ] [x,w]\cap[L_j,R_j] [x,w][Lj,Rj] 非空。而 [ x , w ] [x,w] [x,w] 不能包含 [ L j , R j ] [L_j,R_j] [Lj,Rj],否则 [ L i , R i ] ⫆ [ x , w ] ⫆ [ L j , R j ] [L_i,R_i]\supseteqq[x,w]\supseteqq[L_j,R_j] [Li,Ri][x,w][Lj,Rj],与 observation 2 矛盾。所以
x ∈ [ L j , R j ] ∨ w ∈ [ L j , R j ] x\in[L_j,R_j]\vee w\in[L_j,R_j] x[Lj,Rj]w[Lj,Rj]
譬如 x ∈ [ L j , R j ] x\in[L_j,R_j] x[Lj,Rj],那么 x , y ∈ [ L j , R j ] x,y\in[L_j,R_j] x,y[Lj,Rj] z , w ∈ [ L i , R i ] z,w\in[L_i,R_i] z,w[Li,Ri],即可以 a , b a,b a,b 坐在桌子 j j j 旁、 c , d c,d c,d 坐在桌子 i i i 旁。

若是 w ∈ [ L j , R j ] w\in[L_j,R_j] w[Lj,Rj],那么 z , w ∈ [ L j , R j ] z,w\in[L_j,R_j] z,w[Lj,Rj] x , y ∈ [ L i , R i ] x,y\in[L_i,R_i] x,y[Li,Ri],即可以 a , b a,b a,b 坐在桌子 i i i 旁、 c , d c,d c,d 坐在桌子 j j j 旁。

  • a a a c c c 坐在 i i i 号桌子旁,而 b b b d d d 坐在 j j j 号桌子旁。

这个比较简单,由 y ∈ [ x , z ] ⫅ [ L i , R i ] y\in[x,z]\subseteqq[L_i,R_i] y[x,z][Li,Ri] z ∈ [ y , w ] ⫅ [ L j , R j ] z\in [y,w]\subseteqq[L_j,R_j] z[y,w][Lj,Rj] 知可以 a , b a,b a,b i i i 号桌子、 c , d c,d c,d 坐在 j j j 号桌子旁。

证毕,证毕,证毕。重要的事说三遍,不重要的事也可以说三遍

这样可以解决 m = 1 m=1 m=1 的情况,但是又怎么拓展呢?于是考虑桌子的选用。事实上,依次选用左端点递增的桌子 就好了。它的证明也是类似的,而且更简单。

  • a , b a,b a,b 走到 x , y ∈ [ L i , R i ] x,y\in[L_i,R_i] x,y[Li,Ri],而 c , d c,d c,d 走到 z , w ∈ [ L j , R j ] z,w\in[L_j,R_j] z,w[Lj,Rj],满足 a ⩽ b ⩽ c ⩽ d a\leqslant b\leqslant c\leqslant d abcd 然而 L i > L j L_i>L_j Li>Lj 。根据 observation 2 同时也满足 R i > R j R_i>R_j Ri>Rj

由于 z , w ⩾ y ⩾ L i z,w\geqslant y\geqslant L_i z,wyLi z , w ⩽ R j < R i z,w\leqslant R_j<R_i z,wRj<Ri 可知 z , w ∈ [ L i , R i ] z,w\in[L_i,R_i] z,w[Li,Ri]

由于 x , y ⩾ L i > L j x,y\geqslant L_i>L_j x,yLi>Lj x , y ⩽ z ⩽ R j x,y\leqslant z\leqslant R_j x,yzRj 可知 x , y ∈ [ L j , R j ] x,y\in[L_j,R_j] x,y[Lj,Rj]

所以直接把 x , y x,y x,y z , w z,w z,w 所对应的桌子互换,并不增加代价。证毕

这说明什么呢?假如你买好了桌子,那么 任意一组的第 2 i − 1 2i-1 2i1 名和第 2 i 2i 2i 名同学都是用的同一桌子。于是每个这样的 i i i 是一个独立的问题,只需要求出最优的那张桌子。

而根据前面的描述,决策是单调的。二分即可。时间复杂度 O ( n log ⁡ m + n m + k log ⁡ n + k log ⁡ k ) \mathcal O(n\log m+nm+k\log n+k\log k) O(nlogm+nm+klogn+klogk) 。为什么没有额外的 log ⁡ \log log 呢?因为我们已经用 O ( k log ⁡ k ) \mathcal O(k\log k) O(klogk) 将桌子排序过了,就可以直接用类似双指针的方式求值(而不是 l o w e r _ b o u n d \rm lower\_bound lower_bound 现场查)。

代码

#include <cstdio>
#include <iostream>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
# define rep(i,a,b) for(int i=(a); i<=(b); ++i)
# define drep(i,a,b) for(int i=(a); i>=(b); --i)
typedef long long int_;
inline int readint(){
	int a = 0, c = getchar(), f = 1;
	for(; '0'>c||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
inline void writeint(int_ x){
	if(x > 9) writeint(x/10);
	putchar(int((x-x/10*10)^48));
}

const int MAXN = 200005;
struct Table{
	int l, r;
	bool operator < (const Table &t) const {
		if(l != t.l) return l < t.l;
		return r > t.r; // bigger
	}
};
Table table[MAXN];
vector<int> a[MAXN];
int tmp[MAXN<<1], n, m, k;

int_ ans;
void solve(int l,int r,int ql,int qr){
	if(l > r) return ; // empty
	int mid = (l+r)>>1;
	vector<int> &v = a[mid];
	sort(v.begin(),v.end());
	int lid = 0, rid = 0; int_ now_val = 0;
	while(lid != (m<<1) && v[lid] < table[ql].l)
		now_val += table[ql].l-v[lid], ++ lid;
	while(rid != (m<<1) && v[rid] < table[ql].r)
		now_val += table[ql].r-v[rid], ++ rid;
	rep(i,lid,(m<<1)-1) now_val += v[i]-table[ql].l;
	rep(i,rid,(m<<1)-1) now_val += v[i]-table[ql].r;
	int best = ql; int_ best_val = (now_val >>= 1);
	best_val -= m*int_(table[ql].r-table[ql].l);
	for(int i=ql+1; i<=qr; ++i){
		now_val += (lid-m)*int_(table[i].l-table[i-1].l);
		now_val += (rid-m)*int_(table[i].r-table[i-1].r);
		while(lid != (m<<1) && v[lid] < table[i].l)
			now_val += table[i].l-v[lid], ++ lid;
		while(rid != (m<<1) && v[rid] < table[i].r)
			now_val += table[i].r-v[rid], ++ rid;
		const int_ addend = m*int_(table[i].r-table[i].l);
		if(now_val-addend < best_val)
			best_val = now_val-addend, best = i;
	}
	ans += best_val; // current value
	solve(l,mid-1,ql,best);
	solve(mid+1,r,best,qr);
}

int main(){
	m = readint(), n = readint();
	k = readint();
	rep(i,1,k){
		table[i].l = readint();
		table[i].r = readint();
	}
	sort(table+1,table+k+1);
	for(int i=2,d=0; i<=k; ++i){
		table[i] = table[i+d];
		if(table[i].r <= table[i-1].r)
			++ d, -- k, -- i; // reload
	}
	rep(i,1,m){
		rep(j,1,n<<1) tmp[j] = readint();
		sort(tmp+1,tmp+(n<<1)+1);
		rep(j,1,n<<1) a[(j+1)>>1].push_back(tmp[j]);
	}
	solve(1,n,1,k);
	printf("%lld\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值