[CF1602F]Difficult Mountain

这篇博客介绍了如何使用动态规划和贪心策略解决一个关于爬山者数量的问题。动态规划方法中,通过前缀最大值与难度的关系建立状态转移方程,利用线段树实现高效查询和更新。贪心策略则是优先考虑满足条件的第一类爬山者,再结合第二类。最终,两种方法都达到了O(nlogn)的时间复杂度。

题目

传送门 to CF

思路

动态规划

显然能爬山的人等价于
s i ⩾ max ⁡ j = 1 i − 1 a j ∧ s i ⩾ d s_i\geqslant\max_{j=1}^{i-1}a_j\wedge s_i\geqslant d sij=1maxi1ajsid
既然前面的人的 a a a 完全不重要,考虑直接记 f ( v ) f(v) f(v) 为前缀 max ⁡ a \max a maxa 等于 v v v 时的最多爬山者。显然一个人不会对爬山难度产生影响时(即 a i ⩽ max ⁡ a a_i\leqslant\max a aimaxa 时)立刻爬山最优,所以如果从 f ( j ) f(j) f(j) 转移过来,所有的 a i ⩽ j a_i\leqslant j aij 都已经爬过山了(否则不优),于是
f ( v ) = f ( j ) + ∑ j < a i ⩽ v [ s i ⩾ v ] ( j < v ) f(v)=f(j)+\sum_{j<a_i\leqslant v}[s_i\geqslant v]\quad(j<v) f(v)=f(j)+j<aiv[siv](j

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值