题目
思路
动态规划
显然能爬山的人等价于
s i ⩾ max j = 1 i − 1 a j ∧ s i ⩾ d s_i\geqslant\max_{j=1}^{i-1}a_j\wedge s_i\geqslant d si⩾j=1maxi−1aj∧si⩾d
既然前面的人的 a a a 完全不重要,考虑直接记 f ( v ) f(v) f(v) 为前缀 max a \max a maxa 等于 v v v 时的最多爬山者。显然一个人不会对爬山难度产生影响时(即 a i ⩽ max a a_i\leqslant\max a ai⩽maxa 时)立刻爬山最优,所以如果从 f ( j ) f(j) f(j) 转移过来,所有的 a i ⩽ j a_i\leqslant j ai⩽j 都已经爬过山了(否则不优),于是
f ( v ) = f ( j ) + ∑ j < a i ⩽ v [ s i ⩾ v ] ( j < v ) f(v)=f(j)+\sum_{j<a_i\leqslant v}[s_i\geqslant v]\quad(j<v) f(v)=f(j)+j<ai⩽v∑[si⩾v](j

这篇博客介绍了如何使用动态规划和贪心策略解决一个关于爬山者数量的问题。动态规划方法中,通过前缀最大值与难度的关系建立状态转移方程,利用线段树实现高效查询和更新。贪心策略则是优先考虑满足条件的第一类爬山者,再结合第二类。最终,两种方法都达到了O(nlogn)的时间复杂度。
最低0.47元/天 解锁文章
11万+

被折叠的 条评论
为什么被折叠?



