[WC2022-DMY]Robbery

30 篇文章 0 订阅
14 篇文章 0 订阅

题目

传送门 to usOJ

题目描述
n n n 种物品,第 i    ( 1 ⩽ i ⩽ n ) i\;(1\leqslant i\leqslant n) i(1in) 种物品质量为 i i i,价值为 a i a_i ai,数量无限。

给定 k , w k,w k,w,请选择 k k k 个物品,质量和为 w w w 且价值之和最大。输出这个价值和。

数据范围与提示
n ⩽ 1 0 3 n\leqslant 10^3 n103 k ⩽ 1 0 6 k\leqslant 10^6 k106 。复杂度与 w ∈ [ k , k n ] w\in[k,kn] w[k,kn] a i ∈ [ 1 , 1 0 9 ] a_i\in[1,10^9] ai[1,109] 无关。

思路

感觉这个做法可以称得上 constructive \text{constructive} constructive 了。

猫腻在于:质量很小,且质量和需要恰好达到 w w w 。考虑到 k ⩽ 1 0 6 k\leqslant 10^6 k106,如果往 log ⁡ k \log k logk 的方向思考,说不定就会醍醐灌顶!

定理:若 2 ∣ k 2\mid k 2k,则可以将一个方案 划分成两组 同样多的物品,且两组的质量和的差值不超过 n n n

证明:设二者质量和的差值超过 n n n 。则质量和较大的那一堆的 max ⁡ > \max> max> 质量和较小的那一堆的 min ⁡ \min min 。二者交换,将会带来一个 2 n 2n 2n 以内的变化量。而原本差值超过 n n n,减去这个 2 n 2n 2n 以内的变化量后,得到的差值的绝对值比原来更小。不断调整即可。

于是,若我们需要求出 k k k 个物品、质量和在 [ a , b ] [a,b] [a,b] 内的答案,只需要递归 k 2 k\over 2 2k 个物品、质量和在 [ a − n 2 , b + n 2 ] [{a-n\over 2},{b+n\over 2}] [2an,2b+n] 内的答案。而 2 ∤ k 2\nmid k 2k 时,就暴力递归 ( k − 1 ) (k{\rm-}1) (k1) 个物品、质量和在 [ a − n , b ] [a{\rm-}n,b] [an,b] 内的答案。复杂度是多少呢?

注意到上面有 ÷ 2 \div2 ÷2 的操作,我们大胆猜测区间长度有上界。最坏情况是 2 ∤ k 2\nmid k 2k,此时区间长度会先加 n n n,再 ÷ 2 \div2 ÷2 后加 n n n 。解方程 L = L + n 2 + n L={L+n\over 2}+n L=2L+n+n L = 3 n L=3n L=3n,即,区间长度为 3 n 3n 3n 就不会再增加了!所以背包合并的复杂度稳定在 O ( n 2 ) \mathcal O(n^2) O(n2),总复杂度 O ( n 2 log ⁡ k ) \mathcal O(n^2\log k) O(n2logk)

代码

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cctype>
using namespace std;
# define rep(i,a,b) for(int i=(a); i<=(b); ++i)
# define drep(i,a,b) for(int i=(a); i>=(b); --i)
typedef long long llong;
inline int readint(){
	int a = 0, c = getchar(), f = 1;
	for(; !isdigit(c); c=getchar())
		if(c == '-') f = -f;
	for(; isdigit(c); c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
template < typename T >
inline void getMax(T &a,const T &b){
	if(a < b) a = b;
}

const int MAXN = 1003, MAXM = MAXN*3;
const long long INF = (1ll<<62)-1;
int a[MAXN], n, me;
llong dp[2][MAXM];
void solve(int k,int l,int r){
	if(k == 1){
		for(int i=l; i<=r&&i<=n; ++i)
			dp[me][i-l] = a[i]; // from int to llong
		if(!l) dp[me][0] = -INF; // not defined
		rep(i,n+1,r) dp[me][i-l] = -INF;
	}
	else if(k&1){
		solve(k-1,l-n,r-1), me ^= 1;
		fill(dp[me],dp[me]+r-l+1,-INF);
		rep(i,l-n,r-1) rep(j,max(1,l-i),n){
			if(i+j > r) break; // too big j
			getMax(dp[me][i+j-l],dp[me^1][i-l+n]+a[j]);
		}
	}
	else{
		const int low = (l-n+1)>>1;
		solve(k>>1,low,(r+n)>>1);
		fill(dp[me^1],dp[me^1]+r-l+1,-INF);
		rep(i,low,(r+n)>>1) rep(j,max(l-i,low),(r+n)>>1){
			if(i+j > r) break; // too big j
			getMax(dp[me^1][i+j-l],dp[me][i-low]+dp[me][j-low]);
		}
		me ^= 1; // who am I
	}
}

int main(){
	n = readint();
	int k = readint(), w = readint();
	rep(i,1,n) a[i] = readint();
	solve(k,w,w);
	printf("%lld\n",dp[me][0]);
	return 0;
}

后记

质量和固定,其实可以联想背包合并的。有点像这道题,又不太像。

质量很小,则是为了使得分治可行。也比较像倍增。像贪心,但硬要说,则又说不出个门道来。说是这种部分贪心吧,还是不能算。真奇怪啊。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值