[CF559E]Gerald and Path

题目

传送门 to CF

思路

一般而言,我们会将区间排序。因为区间实质上是 二维偏序 关系,按照端点排序 可以使得某一维度上有序,相当于 降维

本题中,区间不太固定。但是两种可能的区间中, a i a_i ai 是共有的端点;所以按照 a i a_i ai 排序是比较自然的。

接下来考虑 d p \tt dp dp 转移。比如当前选择 [ a i − l i , a i ] [a_i-l_i,a_i] [aili,ai],我们需要找出它的新增覆盖区间。但是,这一大段区间内,可能选择了若干小段,不可能全部记录下来。怎么办?

一种想法是,忽略细碎段。无用的信息就不要往 d p \tt dp dp 状态里塞。有用的区间可能是 [ s i , t i ]    ( s i < a i − l i < t i ) [s_i,t_i]\;(s_i<a_i-l_i<t_i) [si,ti](si<aili<ti) [ s i , t i ]    ( s i < a i < t i ) [s_i,t_i]\;(s_i<a_i<t_i) [si,ti](si<ai<ti),也就是覆盖前缀或后缀。

那么我们枚举一个区间 p p p,它覆盖一段前缀,其余的区间就不能覆盖到它的右边。 p p p 可能是选左,此时不被忽略的区间只有 p p p 之前的区间; p p p 可能选右,不被忽略的区间则是 [ 1 , i ) [1,i) [1,i) 的区间,这个 i i i p p p 没有关系。

所以我们不要拘泥于一维 d p \tt dp dp,记 f ( p , i ) f(p,i) f(p,i) 为只考虑 [ 1 , i ] [1,i] [1,i] 区间、 p p p 区间选右、其余区间不覆盖 p p p 之右,最长覆盖距离和。转移还是用同样的方法,枚举覆盖前缀的区间 j j j,从 f ( j , p − 1 ) f(j,p{\rm-}1) f(j,p1) 转移过来。

g ( p ) g(p) g(p) 为只考虑 [ 1 , p ] [1,p] [1,p] 区间、 p p p 区间选左、其余区间不覆盖 p p p 之右,最长覆盖距离和。相较之下,它的转移容易些,故此处从略。

时间复杂度 O ( n 3 ) \mathcal O(n^3) O(n3) 。代码实现比较流畅。交上去就过不了,又调试了很久

代码

可能不存在覆盖前缀的区间,故最好令初值为区间长度(相当于只选出自己)。

#include <cstdio> // JZM yydJUNK!!!
#include <iostream> // XJX yyds!!!
#include <algorithm> // XYX yydLONELY!!!
#include <cstring> // (the STRONG long for LONELINESS)
#include <cctype> // ZXY yydSISTER!!!
using namespace std;
# define rep(i,a,b) for(int i=(a); i<=(b); ++i)
# define drep(i,a,b) for(int i=(a); i>=(b); --i)
typedef long long llong;
inline int readint(){
	int a = 0, c = getchar(), f = 1;
	for(; !isdigit(c); c=getchar())
		if(c == '-') f = -f;
	for(; isdigit(c); c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
inline void getMax(int &x, const int &y){
	if(x < y) x = y;
}

const int MAXN = 105;
std::pair<int,int> a[MAXN];
int lef[MAXN], rig[MAXN][MAXN];

const int INF = 200000000;
int main(){
	int n = readint();
	rep(i,1,n) a[i].first = readint(), a[i].second = readint();
	std::sort(a+1,a+n+1); // sort by COORD
	for(int i=1; i<=n; ++i){
		lef[i] = a[i].second; // only itself
		for(int j=1; j!=i; ++j){ // last longest
			if(a[j].first+a[j].second <= a[i].first)
				getMax(lef[i],rig[i-1][j]+min(a[i].first
					-a[j].first-a[j].second,a[i].second));
			getMax(lef[i],lef[j]+min(a[i].first-a[j].first,a[i].second));
		}
		int l = a[i].first; // whatever
		for(int j=i; j; --j){ // my longest
			const int w = a[j].first+a[j].second;
			l = std::min(l,a[j].first); // itself's left point
			if(w >= a[i].first){ // really longer
				rig[i][j] = w-l; // only itself
				for(int k=1; k!=j; ++k){ // previous longest
					getMax(rig[i][j],rig[j-1][k]+w
						-max(a[k].first+a[k].second,l));
					getMax(rig[i][j],lef[k]+w-max(l,a[k].first));
				}
			}
			else rig[i][j] = rig[i-1][j]; // not to choose it
			l = min(l,a[j].first-a[j].second); // be toL
		}
	}
	int ans = lef[n]; // @a lef is non-decreasing
	rep(i,1,n) getMax(ans,rig[n][i]);
	printf("%d\n",ans);
	return 0;
}

后记

仿照 Lanterns \text{Lanterns} Lanterns 的做法,不以区间为决策,以覆盖情况为决策,至少应该能做到 O ( n 2 log ⁡ n ) \mathcal O(n^2\log n) O(n2logn) 。将 a i − l i ,    a i ,    a i + l i a_i-l_i,\;a_i,\;a_i+l_i aili,ai,ai+li 一起离散化,预处理 g ( i , j ) g(i,j) g(i,j) 为能否用内部区间覆盖第 i i i 段到第 j j j 段。对于某个 i i i,用 Lanterns \text{Lanterns} Lanterns 的方法是 O ( n log ⁡ n ) \mathcal O(n\log n) O(nlogn) 的。

纯口胡,似乎可以做到 O ( n 2 ) \mathcal O(n^2) O(n2) 。因为 S T \tt ST ST 表是 O ( n log ⁡ n ) \mathcal O(n\log n) O(nlogn) 的,瓶颈在于,求出形如 h ( i ) ⩾ w j h(i)\geqslant w_j h(i)wj 的最小 i i i 。如果先把 w j w_j wj 离散化出来,对于每个 f ( i ) f(i) f(i) 立刻更新其可以转移到的 j j j,就没有二分的过程了。注意 h ( i ) h(i) h(i) 是 “段” 的编号,所以应该可以预处理后 O ( 1 ) \mathcal O(1) O(1) 查出可更新区间。

最后,其实存在 O ( n 2 ) \mathcal O(n^2) O(n2) 的纯 d p \tt dp dp 做法,已经被 O U Y E \sf OUYE OUYE 在看到题后的 10 m i n 10\rm min 10min 内想出。我花了 2 h 30 m i n \rm 2h30min 2h30min 只想出 O ( n 3 ) \mathcal O(n^3) O(n3)

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值