[ACNOI2022]求和

280 篇文章 1 订阅
12 篇文章 0 订阅

题目

题目背景
蛋教筛终于取代了杜教筛,飘飘蛋名震四方!

“我有一颗蛋,足以慰风尘”。——《咏蛋》

题目描述
x x x 的质因数分解为 ∏ i p i   a i \prod_i p_i^{\thinspace a_i} ipiai,定义
f k ( x ) = ∏ i ( − 1 ) a i [ a i ⩽ k ] f_k(x)=\prod_{i}(-1)^{a_i}[a_i\leqslant k] fk(x)=i(1)ai[aik]

不难发现 f 1 ( x ) = μ ( x ) f_1(x)=\mu(x) f1(x)=μ(x) 。现在需求出
∑ i = 1 n ∑ j = 1 n ∑ d = 1 k f d ( gcd ⁡ ( i , j ) ) \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{d=1}^{k}f_d(\gcd(i,j)) i=1nj=1nd=1kfd(gcd(i,j))

答案对 2 30 2^{30} 230 取模。

数据范围与提示
n ⩽ 1 0 10 n\leqslant 10^{10} n1010 k ⩽ 40 k\leqslant 40 k40

思路

不难发现答案是 ( 2 φ − ϵ ) ∗ ( ∑ i f i ) (2\varphi-\epsilon)*(\sum_i f_i) (2φϵ)(ifi) 的前缀和,其中 ∗ * 代表狄利克雷卷积。

如果对每个 f i f_i fi 单独求解,显然可以做到 O ( n 0.75 k ln ⁡ n ) \mathcal O(\frac{n^{0.75}k}{\ln n}) O(lnnn0.75k) 。如果你跑得像兔子一样快,我不做评价。

观察 f k f_k fk 的贝尔生成函数,不太能杜教筛。但是可以 powerful numbers \text{powerful numbers} powerful numbers 。用什么拟合 f k f_k fk 呢?要用 μ \mu μ,因为这样又有了一个美丽的巧合: f k μ \frac{f_k}{\mu} μfk 的每一项要么是 0 0 0 要么是 1 1 1 。因此,在搜索 powerful numbers \text{powerful numbers} powerful numbers 的时候,可以同时用一个 k -bit k\text{-bit} k-bit 的二进制数,记录哪些 f i ( x ) = 1 f_i(x)=1 fi(x)=1 。预处理这个简单的表,转移是 O ( 1 ) \mathcal O(1) O(1) 的,且可以得到每个 ( 2 φ − ϵ ) ∗ μ (2\varphi-\epsilon)*\mu (2φϵ)μ 的前缀和的贡献系数。

显然 φ ∗ μ \varphi*\mu φμ 可以杜教筛,时间复杂度 O ( n 2 / 3 ) \mathcal O(n^{2/3}) O(n2/3)

总结一下就是:一方面, n = 1 0 10 n=10^{10} n=1010 的时候 n 2 / 3 n^{2/3} n2/3 算出来就是比 n 3 / 4 ln ⁡ n \frac{n^{3/4}}{\ln n} lnnn3/4 小嘛;另一方面,类似于 bitset \texttt{bitset} bitset 的优化是没有减少计算量但是加快了运行速度的 😢

代码

#include <cstdio>
#include <algorithm> // Almighty XJX yyds!!
#include <cstring> // oracle: ZXY yydBUS!!!
#include <cctype> // Huge Egg Dog eat me!!!
#include <cstdint>
#include <cassert>
# define rep(i,a,b) for(int i=(a); i<=(b); ++i)
# define drep(i,a,b) for(int i=(a); i>=(b); --i)
# define rep0(i,a,b) for(int i=(a); i!=(b); ++i)
using llong = long long;
inline int readint(){
	int a = 0, c = getchar(), f = 1;
	for(; !isdigit(c); c=getchar()) if(c == '-') f = -f;
	for(; isdigit(c); c=getchar()) a = a*10+(c^48);
	return a*f;
}

const int MAXN = 5000000;
bool is_prime[MAXN];
unsigned primes[MAXN], primes_size, least[MAXN];
unsigned phi[MAXN], mu[MAXN], mp[MAXN];
void sieve(unsigned n = MAXN-1){
	memset(is_prime+2, true, n-1);
	phi[1] = mu[1] = mp[1] = 1;
	for(unsigned i=2,&len=primes_size=0; i<=n; ++i){
		if(is_prime[i]){
			primes[++ len] = least[i] = i;
			phi[i] = i-1, mu[i] = -1, mp[i] = i-2;
		}
		for(unsigned j=1; j<=len&&primes[j]*i<=n; ++j){
			const unsigned to = i*primes[j];
			is_prime[to] = false;
			if(!(i%primes[j])){
				least[to] = least[i]*primes[j];
				if(least[i] == i) // power of prime
					mp[to] = (phi[to]=to-i)-phi[i];
				else{
					phi[to] = phi[least[to]]*phi[i/least[i]];
					mp[to] = mp[least[to]]*mp[i/least[i]];
				}
				mu[to] = 0; break;
			}
			least[to] = primes[j], mu[to] = -mu[i];
			phi[to] = phi[i]*(primes[j]-1);
			mp[to] = mp[i]*(primes[j]-2); // J-xing
		}
	}
}

const int SQRTN = 100000;
llong w[SQRTN]; int haxi[SQRTN];
# define _id(x) haxi[n/(x)] // only for x > SQRTN
unsigned mu_sum[SQRTN], phi_sum[SQRTN], mp_sum[SQRTN];

const int LOGN = 33;
# define bitcnt(x) unsigned(__builtin_popcountll(x))
uint64_t choice[LOGN+1]; unsigned ans;
void dfs(const llong &n, int max_id, llong nowx, uint64_t nowv){
	if(!nowv) return; // no more chances
	{ // contribute to answer
		llong v = n/nowx; // what to multiply
		if(v < MAXN) ans += ((mp[v]<<1)-mu[v])*bitcnt(nowv);
		else v = _id(v), ans += (2*mp_sum[v]-mu_sum[v])*bitcnt(nowv);	
	}
	for(int i=1; i<=max_id; ++i){
		if(nowx*primes[i]*primes[i] > n) break;
		llong nxtx = nowx*primes[i];
		for(int j=2; true; ++j){
			if((nxtx *= primes[i]) > n) break;
			dfs(n, i-1, nxtx, nowv&choice[j]);
		}
	}
}

int main(){
	sieve(); // pre-compute
	rep0(i,2,MAXN){
		mu[i] += mu[i-1], phi[i] += phi[i-1];
		mp[i] += mp[i-1]; // all needed
	}
	llong n; scanf("%lld",&n);
	int k = readint(), tot = 0;
	for(llong l=1; true; l=n/w[tot]+1){
		if(n/l < MAXN) break; // done
		w[++tot] = n/l, _id(w[tot]) = tot;
	}
	for(int i=tot; i; --i){
		mu_sum[i] = 1; // mu * I = e
		phi_sum[i] = unsigned(w[i]*(w[i]+1)>>1);
		for(llong l=2,v,r; l!=w[i]+1; l=r){
			v = w[i]/l, r = w[i]/v+1;
			const unsigned len = unsigned(r-l);
			if(v < MAXN){ // transfer together
				mu_sum[i] -= len*mu[v];
				phi_sum[i] -= len*phi[v];
				mp_sum[i] -= len*mp[v];
			}
			else{
				v = _id(v); // uniform index
				mu_sum[i] -= len*mu_sum[v];
				phi_sum[i] -= len*phi_sum[v];
				mp_sum[i] -= len*mp_sum[v];
			}
		}
		mp_sum[i] += phi_sum[i];
	}
	rep(i,1,k){ // for each kind
		for(int j=2; j<=i&&j<=LOGN; j+=2) choice[j] |= 1ull<<i;
		if(!(i&1)) rep(j,i+1,LOGN) choice[j] |= 1ull<<i;
	}
	dfs(n, primes_size, 1, (2ull<<k)-2);
	ans &= (1u<<30)-1; // modulus
	printf("%u\n", ans);
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值