人脸检测haar方法(opencv自带,需要去下载训练好的.xml文件)

步骤

1、读取包含人脸的图片

2.使用haar模型识别人脸

3.将识别结果用矩形框画出来

github:opencv haar

下载地址:https://github.com/opencv/opencv/tree/master/data

当前下载的在 haarcascades文件夹内

import cv2


def cv_show(neme, img):
    cv2.namedWindow(neme, cv2.WINDOW_NORMAL)
    cv2.imshow(neme, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


# 读取图片
img = cv2.imread('./images/faces1.jpg')

# 构造haar检测器
face_detector = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')

# 转为灰度图
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 检测结果
# 调节参数
# scaleFactor:调整图片尺寸
# minNeighbors:候选人脸数量
# minSize:最小人脸尺寸
# maxSize:最大人脸尺寸
# detections = face_detector.detectMultiScale(img_gray, scaleFactor=1.3, minNeighbors=7, minSize=(10, 10),
#                                             maxSize=(100, 100))
detections = face_detector.detectMultiScale(img_gray)

# 解析检测结果
for (x, y, w, h) in detections:
    # 在原图上绘制
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 5)

cv_show('neme', img)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

默执_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值