雷达原理(一):雷达波形
写在前面的话:
这个系列主要学习雷达的相关原理和其
m
a
t
l
a
b
matlab
matlab实现。
参考书籍:《雷达系统设计
m
a
t
l
a
b
matlab
matlab仿真》
1.低通,带通信号和正交分量
如果信号包含的主要频率处于包括直流 ( D C ) (DC) (DC)在内的低频频带,则称其为低通 ( L P ) (LP) (LP)信号。如果信号包含的主要频率处于离开原点的某个频率附近,则称其为带通 ( B P ) (BP) (BP)信号。一个实带通信号 x ( t ) x( t) x(t)在数学上可表示为:
其中, r ( t ) r(t) r(t)是幅度调制或包络, ϕ x ( t ) \phi_{x}(t) ϕx(t)是相位调制, f 0 f_{0} f0是载波频率, r ( t ) r(t) r(t)和 ϕ x ( t ) \phi_{x}(t) ϕx(t)所含的频率成分都比 f 0 f_{0} f0显然要小,调制频率为:
瞬时频率为:
如果信号带宽为
B
B
B,且
f
0
f_{0}
f0远大于
B
B
B,则信号
x
(
t
)
x(t)
x(t)被称为窄带信号。
带通信号也可以用两个称为正交分量的低通信号表示,此时实带通信号可表示为:
其中, x I ( t ) 和 x Q ( t ) x_{I}(t)和x_{Q}(t) xI(t)和xQ(t)是称为正交分量的实低通信号,分别表示为:
下图说明了正交分量是如何被提取的:
2.解析信号
在上式中定义的正弦信号 x ( t ) x(t) x(t)可以写为复信号的实部,更具体地可以表示为:
定义解析信号为:
其中
并且
Ψ ( ω ) \quad\quad Ψ(ω) Ψ(ω)是 ψ ( t ) ψ(t) ψ(t)的傅里叶变换, X ( ω ) X(ω) X(ω)是 x ( t ) x(t) x(t)的傅里叶变换。上式可以写为
其中,
U
(
ω
)
U(\omega)
U(ω)为频域阶跃函数。由此可以得出
ψ
(
t
)
=
x
(
t
)
+
j
x
~
(
t
)
ψ(t)=x(t)+j\widetilde{x}(t)
ψ(t)=x(t)+jx
(t) ,
x
~
(
t
)
\widetilde{x}(t)
x
(t)是
x
(
t
)
x(t)
x(t)的希尔伯特变换。
\quad \quad
综合上面的式子,可以得到
\quad 这与前面推导得到的
是一致的, ω = 2 π f 0 \omega=2\pi f_{0} ω=2πf0。由帕塞瓦尔定理,可以看出 x ( t ) x(t) x(t)的能量为 ψ ( t ) ψ(t) ψ(t)的一半。
3.连续和脉冲波形
\quad
一个给定信号的频谱描述了其能量在频域的分布。一个能量信号(有限能量)的特征可以由它的能量谱密度(
E
S
D
ESD
ESD)函数来表示,而一个功率信号(有限功率)的特征可以由它的功率谱密度(
P
S
D
PSD
PSD)函数来表示。
E
S
D
ESD
ESD的单位为
J
/
H
J/H
J/H,
P
S
D
PSD
PSD的单位为
W
/
H
W/H
W/H。
\quad
信号带宽是指信号非零谱的频率范围。一般说来,一个信号可以由它的时宽(时域)和带宽(频域)来定义。如果信号的带宽是有限的,那么就说这个信号是带限的。具有有限持续时间(时间有限)的信号具有无限的带宽,而带宽有限的信号具有无限的持续时间。极限情况是一个连续正弦信号,它的带宽是无限小的。
4.线性调频波形
下面的重点是研究线性调频信号的matlab实现
function LFM(B,T);
time_B_product = B * T;
if(time_B_product < 5 )
fprintf('************ Time Bandwidth product is TOO SMALL ***************')
fprintf('\n Change B and or T')
return
else
end
% Compute alpha
mu = 2. * pi * B / T;
npoints = 5 * B * T + 1;
% Determine sampling times
delt = linspace(-T/2., T/2., npoints); %
% Compute the complex LFM representation
Ichannal = cos(mu .* delt.^2 / 2.); % Real part
Qchannal = sin(mu .* delt.^2 / 2.); % Imaginary Part
LFM = Ichannal + sqrt(-1) .* Qchannal; % complex signal
%Compute the FFT of the LFM waveform
LFMFFT = fftshift(fft(LFM));
% Plot the real and Inginary parts and the spectrum
sampling_interval = T / npoints;
freqlimit = 0.5 / sampling_interval;
freq = linspace(-freqlimit,freqlimit,npoints);
figure(1)
plot(delt,Ichannal,'k');
axis([-T/2 T/2 -1 1])
grid
xlabel('Time - seconds')
ylabel('Units of Waveform')
title('Real part of an LFM waveform')
figure(2)
plot(delt,Qchannal,'k');
axis([-T/2 T/2 -1 1])
grid
xlabel('Time - seconds')
ylabel('Units of Waveform')
title('Imaginary part of LFM waveform')
figure(3)
plot(freq, abs(LFMFFT),'k');
%axis tight
grid
xlabel('Frequency - Hz')
ylabel('Amplitude spectrum')
title('Spectrum for an LFM waveform')
\quad 此函数传入的参数为未压缩的脉宽 T T T和调制带宽B
5. 高距离分辨率
\quad\quad 距离分辨率
\quad\quad 雷达使用者和设计者不约而同地通过最小化 Δ R ΔR ΔR来寻求实现高距离分辨率 ( H R R ) (HRR) (HRR)。然而如式(3.47)所示,为了得到高距离分辨率,必须使用短脉冲,从而导致平均发射功率的减小,并且强加了对大工作带宽的需求。在得到好的距离分辨率的同时保持足够的平均发射功率,可以通过使用脉冲压缩技术来实现,。利用频率或相位调制,脉冲压缩可以使我们获得相当长脉冲的平均发射功率,同时得到对应非常短脉冲的距离分辨率。例如,考虑一个 L F M LFM LFM波形,其带宽为B,未压缩脉宽为 τ \tau τ。经过脉冲压缩后,压缩后的脉宽表示为 τ ′ \tau^{'} τ′ ,其中 τ ′ \tau^{'} τ′<< τ \tau τ , H R R HRR HRR为
\quad \quad 常用方法是使用线性调频和调频(FM)连续波信号来得到 H R R HRR HRR。