雷达原理(一):雷达波形

雷达原理(一):雷达波形

写在前面的话:
  这个系列主要学习雷达的相关原理和其 m a t l a b matlab matlab实现。
  参考书籍:《雷达系统设计 m a t l a b matlab matlab仿真》

1.低通,带通信号和正交分量

  如果信号包含的主要频率处于包括直流 ( D C ) (DC) (DC)在内的低频频带,则称其为低通 ( L P ) (LP) (LP)信号。如果信号包含的主要频率处于离开原点的某个频率附近,则称其为带通 ( B P ) (BP) (BP)信号。一个实带通信号 x ( t ) x( t) x(t)在数学上可表示为:

x ( t ) = r ( t ) c o s ( 2 π f 0 t + ϕ x ( t ) ) x(t)=r(t)cos(2\pi f_{0}t+\phi_{x}(t)) x(t)=r(t)cos(2πf0t+ϕx(t))

其中, r ( t ) r(t) r(t)是幅度调制或包络, ϕ x ( t ) \phi_{x}(t) ϕx(t)是相位调制, f 0 f_{0} f0是载波频率, r ( t ) r(t) r(t) ϕ x ( t ) \phi_{x}(t) ϕx(t)所含的频率成分都比 f 0 f_{0} f0显然要小,调制频率为:

f m ( t ) = 1 2 π d d t ϕ x ( t ) f_{m}(t)=\frac{1}{2\pi}\frac{d}{dt}\phi_{x}(t) fm(t)=2π1dtdϕx(t)

瞬时频率为:

f i ( t ) = 1 2 π d d t ( 2 π f 0 t + ϕ x ( t ) ) = f 0 + f m f_{i}(t)=\frac{1}{2\pi}\frac{d}{dt}(2\pi f_{0}t+\phi_{x}(t))=f_{0}+f_{m} fi(t)=2π1dtd(2πf0t+ϕx(t))=f0+fm

如果信号带宽为 B B B,且 f 0 f_{0} f0远大于 B B B,则信号 x ( t ) x(t) x(t)被称为窄带信号。
带通信号也可以用两个称为正交分量的低通信号表示,此时实带通信号可表示为:

x ( t ) = x I ( t ) c o s 2 π f 0 t − x Q ( t ) s i n 2 π f 0 t x(t)=x_{I}(t)cos2\pi f_{0}t-x_{Q}(t)sin2\pi f_{0}t x(t)=xI(t)cos2πf0txQ(t)sin2πf0t

其中, x I ( t ) 和 x Q ( t ) x_{I}(t)和x_{Q}(t) xI(t)xQ(t)是称为正交分量的实低通信号,分别表示为:

x I ( t ) = r ( t ) c o s ϕ x ( t ) x_{I}(t)=r(t)cos\phi_{x}(t) xI(t)=r(t)cosϕx(t)
x Q ( t ) = r ( t ) s i n ϕ x ( t ) x_{Q}(t)=r(t)sin\phi_{x}(t) xQ(t)=r(t)sinϕx(t)

下图说明了正交分量是如何被提取的:


在这里插入图片描述

2.解析信号

 在上式中定义的正弦信号 x ( t ) x(t) x(t)可以写为复信号的实部,更具体地可以表示为:

x ( t ) = R e x(t)=Re x(t)=Re{ ψ ( t ) ψ(t) ψ(t)}= R e Re Re{ r ( t ) e j ϕ x ( t ) e j 2 π f o t r(t)e^{j\phi_{x}(t)e^{j2\pi f_{o}t}} r(t)ejϕx(t)ej2πfot}

定义解析信号为:

ψ ( t ) = v ( t ) e j 2 π f 0 ( t ) ψ(t)=v(t)e^{j2\pi f_{0}(t)} ψ(t)=v(t)ej2πf0(t)

其中

v ( t ) = r ( t ) j ϕ x ( t ) v(t)=r(t)^{j\phi_{x}(t)} v(t)=r(t)jϕx(t)

并且

Ψ ( ω ) = { 2 X ( ω ) ω ⩾ 0 0 ω < 0 Ψ(ω)=\left\{\begin{matrix} {2X(ω) \quad\quad \quad ω\geqslant0 }\\0 \quad \quad \quad \quad \quad ω<0 \end{matrix}\right. Ψ(ω)={2X(ω)ω00ω<0

Ψ ( ω ) \quad\quad Ψ(ω) Ψ(ω) ψ ( t ) ψ(t) ψ(t)的傅里叶变换, X ( ω ) X(ω) X(ω) x ( t ) x(t) x(t)的傅里叶变换。上式可以写为

Ψ ( ω ) = 2 U ( ω ) X ( ω ) Ψ(ω)=2U(\omega)X(\omega) Ψ(ω)=2U(ω)X(ω)

其中, U ( ω ) U(\omega) U(ω)为频域阶跃函数。由此可以得出 ψ ( t ) = x ( t ) + j x ~ ( t ) ψ(t)=x(t)+j\widetilde{x}(t) ψ(t)=x(t)+jx (t) x ~ ( t ) \widetilde{x}(t) x (t) x ( t ) x(t) x(t)的希尔伯特变换
\quad \quad 综合上面的式子,可以得到

x ( t ) = u 0 I ( t ) c o s w 0 t − u 0 Q ( t ) s i n w 0 t x(t)=u_{0I}(t)cosw_{0}t-u_{0Q}(t)sinw_{0}t x(t)=u0I(t)cosw0tu0Q(t)sinw0t

\quad 这与前面推导得到的

x ( t ) = x I ( t ) c o s 2 π f 0 t − x Q ( t ) s i n 2 π f 0 t x(t)=x_{I}(t)cos2\pi f_{0}t-x_{Q}(t)sin2\pi f_{0}t x(t)=xI(t)cos2πf0txQ(t)sin2πf0t

是一致的, ω = 2 π f 0 \omega=2\pi f_{0} ω=2πf0。由帕塞瓦尔定理,可以看出 x ( t ) x(t) x(t)的能量为 ψ ( t ) ψ(t) ψ(t)的一半。

3.连续和脉冲波形

\quad 一个给定信号的频谱描述了其能量在频域的分布。一个能量信号(有限能量)的特征可以由它的能量谱密度( E S D ESD ESD)函数来表示,而一个功率信号(有限功率)的特征可以由它的功率谱密度( P S D PSD PSD)函数来表示。 E S D ESD ESD的单位为 J / H J/H J/H, P S D PSD PSD的单位为 W / H W/H W/H
\quad 信号带宽是指信号非零谱的频率范围。一般说来,一个信号可以由它的时宽(时域)和带宽(频域)来定义。如果信号的带宽是有限的,那么就说这个信号是带限的。具有有限持续时间(时间有限)的信号具有无限的带宽,而带宽有限的信号具有无限的持续时间。极限情况是一个连续正弦信号,它的带宽是无限小的。

在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

在这里插入图片描述

4.线性调频波形

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述
下面的重点是研究线性调频信号的matlab实现

function LFM(B,T);
time_B_product = B * T;
if(time_B_product < 5 )
    fprintf('************ Time Bandwidth product is TOO SMALL ***************')
    fprintf('\n Change B and or T')
    return
else
end
% Compute alpha
mu = 2. * pi * B / T;
npoints = 5 * B * T + 1;
% Determine sampling times
delt = linspace(-T/2., T/2., npoints); % 
% Compute the complex LFM representation
Ichannal = cos(mu .* delt.^2 / 2.); % Real part
Qchannal = sin(mu .* delt.^2 / 2.); % Imaginary Part
LFM = Ichannal + sqrt(-1) .* Qchannal; % complex signal
%Compute the FFT of the LFM waveform
LFMFFT = fftshift(fft(LFM));
% Plot the real and Inginary parts and the spectrum
sampling_interval = T / npoints;
freqlimit = 0.5 / sampling_interval;
freq = linspace(-freqlimit,freqlimit,npoints);
figure(1)
plot(delt,Ichannal,'k');
axis([-T/2 T/2 -1 1])
grid



xlabel('Time - seconds')
ylabel('Units of Waveform')
title('Real part of an LFM waveform')
figure(2)
plot(delt,Qchannal,'k');
axis([-T/2 T/2 -1 1])
grid



xlabel('Time - seconds')
ylabel('Units of Waveform')
title('Imaginary part of LFM waveform')
figure(3)
plot(freq, abs(LFMFFT),'k');
%axis tight
grid
xlabel('Frequency - Hz')
ylabel('Amplitude spectrum')
title('Spectrum for an LFM waveform')

\quad 此函数传入的参数为未压缩的脉宽 T T T和调制带宽B

5. 高距离分辨率

\quad\quad 距离分辨率

Δ R = c τ 2 = c 2 B ΔR=\frac{c\tau}{2}=\frac{c}{2B} ΔR=2cτ=2Bc

\quad\quad 雷达使用者和设计者不约而同地通过最小化 Δ R ΔR ΔR来寻求实现高距离分辨率 ( H R R ) (HRR) (HRR)。然而如式(3.47)所示,为了得到高距离分辨率,必须使用短脉冲,从而导致平均发射功率的减小,并且强加了对大工作带宽的需求。在得到好的距离分辨率的同时保持足够的平均发射功率,可以通过使用脉冲压缩技术来实现,。利用频率或相位调制,脉冲压缩可以使我们获得相当长脉冲的平均发射功率,同时得到对应非常短脉冲的距离分辨率。例如,考虑一个 L F M LFM LFM波形,其带宽为B,未压缩脉宽为 τ \tau τ。经过脉冲压缩后,压缩后的脉宽表示为 τ ′ \tau^{'} τ ,其中 τ ′ \tau^{'} τ<< τ \tau τ , H R R HRR HRR

Δ R = c τ ′ 2 < < c τ 2 ΔR=\frac{c\tau^{'}}{2}<<\frac{c\tau^{}}{2} ΔR=2cτ<<2cτ

\quad \quad 常用方法是使用线性调频和调频(FM)连续波信号来得到 H R R HRR HRR

6.其他波形以后待补充(接着这篇文章添加)

  • 5
    点赞
  • 2
    评论
  • 23
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

评论 2 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

飘羽@进阶

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值