雷达原理(一):雷达波形

雷达原理(一):雷达波形

写在前面的话:
  这个系列主要学习雷达的相关原理和其 m a t l a b matlab matlab实现。
  参考书籍:《雷达系统设计 m a t l a b matlab matlab仿真》

1.低通,带通信号和正交分量

  如果信号包含的主要频率处于包括直流 ( D C ) (DC) (DC)在内的低频频带,则称其为低通 ( L P ) (LP) (LP)信号。如果信号包含的主要频率处于离开原点的某个频率附近,则称其为带通 ( B P ) (BP) (BP)信号。一个实带通信号 x ( t ) x( t) x(t)在数学上可表示为:

x ( t ) = r ( t ) c o s ( 2 π f 0 t + ϕ x ( t ) ) x(t)=r(t)cos(2\pi f_{0}t+\phi_{x}(t)) x(t)=r(t)cos(2πf0t+ϕx(t))

其中, r ( t ) r(t) r(t)是幅度调制或包络, ϕ x ( t ) \phi_{x}(t) ϕx(t)是相位调制, f 0 f_{0} f0是载波频率, r ( t ) r(t) r(t) ϕ x ( t ) \phi_{x}(t) ϕx(t)所含的频率成分都比 f 0 f_{0} f0显然要小,调制频率为:

f m ( t ) = 1 2 π d d t ϕ x ( t ) f_{m}(t)=\frac{1}{2\pi}\frac{d}{dt}\phi_{x}(t) fm(t)=2π1dtdϕx(t)

瞬时频率为:

f i ( t ) = 1 2 π d d t ( 2 π f 0 t + ϕ x ( t ) ) = f 0 + f m f_{i}(t)=\frac{1}{2\pi}\frac{d}{dt}(2\pi f_{0}t+\phi_{x}(t))=f_{0}+f_{m} fi(t)=2π1dtd(2πf0t+ϕx(t))=f0+fm

如果信号带宽为 B B B,且 f 0 f_{0} f0远大于 B B B,则信号 x ( t ) x(t) x(t)被称为窄带信号。
带通信号也可以用两个称为正交分量的低通信号表示,此时实带通信号可表示为:

x ( t ) = x I ( t ) c o s 2 π f 0 t − x Q ( t ) s i n 2 π f 0 t x(t)=x_{I}(t)cos2\pi f_{0}t-x_{Q}(t)sin2\pi f_{0}t x(t)=xI(t)cos2πf0txQ(t)sin2πf0t

其中, x I ( t ) 和 x Q ( t ) x_{I}(t)和x_{Q}(t) xI(t)xQ(t)是称为正交分量的实低通信号,分别表示为:

x I ( t ) = r ( t ) c o s ϕ x ( t ) x_{I}(t)=r(t)cos\phi_{x}(t) xI(t)=r(t)cosϕx(t)
x Q ( t ) = r ( t ) s i n ϕ x ( t ) x_{Q}(t)=r(t)sin\phi_{x}(t) xQ(t)=r(t)sinϕx(t)

下图说明了正交分量是如何被提取的:


在这里插入图片描述

2.解析信号

 在上式中定义的正弦信号 x ( t ) x(t) x(t)可以写为复信号的实部,更具体地可以表示为:

x ( t ) = R e x(t)=Re x(t)=Re{ ψ ( t ) ψ(t) ψ(t)}= R e Re Re{ r ( t ) e j ϕ x ( t ) e j 2 π f o t r(t)e^{j\phi_{x}(t)e^{j2\pi f_{o}t}} r(t)ejϕx(t)ej2πfot}

定义解析信号为:

ψ ( t ) = v ( t ) e j 2 π f 0 ( t ) ψ(t)=v(t)e^{j2\pi f_{0}(t)} ψ(t)=v(t)ej2πf0(t)

其中

v ( t ) = r ( t ) j ϕ x ( t ) v(t)=r(t)^{j\phi_{x}(t)} v(t)=r(t)jϕx(t)

并且

Ψ ( ω ) = { 2 X ( ω ) ω ⩾ 0 0 ω < 0 Ψ(ω)=\left\{\begin{matrix} {2X(ω) \quad\quad \quad ω\geqslant0 }\\0 \quad \quad \quad \quad \quad ω<0 \end{matrix}\right. Ψ(ω)={2X(ω)ω00ω<0

Ψ ( ω ) \quad\quad Ψ(ω) Ψ(ω) ψ ( t ) ψ(t) ψ(t)的傅里叶变换, X ( ω ) X(ω) X(ω) x ( t ) x(t) x(t)的傅里叶变换。上式可以写为

Ψ ( ω ) = 2 U ( ω ) X ( ω ) Ψ(ω)=2U(\omega)X(\omega) Ψ(ω)=2U(ω)X(ω)

其中, U ( ω ) U(\omega) U(ω)为频域阶跃函数。由此可以得出 ψ ( t ) = x ( t ) + j x ~ ( t ) ψ(t)=x(t)+j\widetilde{x}(t) ψ(t)=x(t)+jx (t) x ~ ( t ) \widetilde{x}(t) x (t) x ( t ) x(t) x(t)的希尔伯特变换
\quad \quad 综合上面的式子,可以得到

x ( t ) = u 0 I ( t ) c o s w 0 t − u 0 Q ( t ) s i n w 0 t x(t)=u_{0I}(t)cosw_{0}t-u_{0Q}(t)sinw_{0}t x(t)=u0I(t)cosw0tu0Q(t)sinw0t

\quad 这与前面推导得到的

x ( t ) = x I ( t ) c o s 2 π f 0 t − x Q ( t ) s i n 2 π f 0 t x(t)=x_{I}(t)cos2\pi f_{0}t-x_{Q}(t)sin2\pi f_{0}t x(t)=xI(t)cos2πf0txQ(t)sin2πf0t

是一致的, ω = 2 π f 0 \omega=2\pi f_{0} ω=2πf0。由帕塞瓦尔定理,可以看出 x ( t ) x(t) x(t)的能量为 ψ ( t ) ψ(t) ψ(t)的一半。

3.连续和脉冲波形

\quad 一个给定信号的频谱描述了其能量在频域的分布。一个能量信号(有限能量)的特征可以由它的能量谱密度( E S D ESD ESD)函数来表示,而一个功率信号(有限功率)的特征可以由它的功率谱密度( P S D PSD PSD)函数来表示。 E S D ESD ESD的单位为 J / H J/H J/H, P S D PSD PSD的单位为 W / H W/H W/H
\quad 信号带宽是指信号非零谱的频率范围。一般说来,一个信号可以由它的时宽(时域)和带宽(频域)来定义。如果信号的带宽是有限的,那么就说这个信号是带限的。具有有限持续时间(时间有限)的信号具有无限的带宽,而带宽有限的信号具有无限的持续时间。极限情况是一个连续正弦信号,它的带宽是无限小的。

在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

在这里插入图片描述

4.线性调频波形

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述
下面的重点是研究线性调频信号的matlab实现

function LFM(B,T);
time_B_product = B * T;
if(time_B_product < 5 )
    fprintf('************ Time Bandwidth product is TOO SMALL ***************')
    fprintf('\n Change B and or T')
    return
else
end
% Compute alpha
mu = 2. * pi * B / T;
npoints = 5 * B * T + 1;
% Determine sampling times
delt = linspace(-T/2., T/2., npoints); % 
% Compute the complex LFM representation
Ichannal = cos(mu .* delt.^2 / 2.); % Real part
Qchannal = sin(mu .* delt.^2 / 2.); % Imaginary Part
LFM = Ichannal + sqrt(-1) .* Qchannal; % complex signal
%Compute the FFT of the LFM waveform
LFMFFT = fftshift(fft(LFM));
% Plot the real and Inginary parts and the spectrum
sampling_interval = T / npoints;
freqlimit = 0.5 / sampling_interval;
freq = linspace(-freqlimit,freqlimit,npoints);
figure(1)
plot(delt,Ichannal,'k');
axis([-T/2 T/2 -1 1])
grid



xlabel('Time - seconds')
ylabel('Units of Waveform')
title('Real part of an LFM waveform')
figure(2)
plot(delt,Qchannal,'k');
axis([-T/2 T/2 -1 1])
grid



xlabel('Time - seconds')
ylabel('Units of Waveform')
title('Imaginary part of LFM waveform')
figure(3)
plot(freq, abs(LFMFFT),'k');
%axis tight
grid
xlabel('Frequency - Hz')
ylabel('Amplitude spectrum')
title('Spectrum for an LFM waveform')

\quad 此函数传入的参数为未压缩的脉宽 T T T和调制带宽B

5. 高距离分辨率

\quad\quad 距离分辨率

Δ R = c τ 2 = c 2 B ΔR=\frac{c\tau}{2}=\frac{c}{2B} ΔR=2cτ=2Bc

\quad\quad 雷达使用者和设计者不约而同地通过最小化 Δ R ΔR ΔR来寻求实现高距离分辨率 ( H R R ) (HRR) (HRR)。然而如式(3.47)所示,为了得到高距离分辨率,必须使用短脉冲,从而导致平均发射功率的减小,并且强加了对大工作带宽的需求。在得到好的距离分辨率的同时保持足够的平均发射功率,可以通过使用脉冲压缩技术来实现,。利用频率或相位调制,脉冲压缩可以使我们获得相当长脉冲的平均发射功率,同时得到对应非常短脉冲的距离分辨率。例如,考虑一个 L F M LFM LFM波形,其带宽为B,未压缩脉宽为 τ \tau τ。经过脉冲压缩后,压缩后的脉宽表示为 τ ′ \tau^{'} τ ,其中 τ ′ \tau^{'} τ<< τ \tau τ , H R R HRR HRR

Δ R = c τ ′ 2 < < c τ 2 ΔR=\frac{c\tau^{'}}{2}<<\frac{c\tau^{}}{2} ΔR=2cτ<<2cτ

\quad \quad 常用方法是使用线性调频和调频(FM)连续波信号来得到 H R R HRR HRR

6.其他波形以后待补充(接着这篇文章添加)

微信扫码订阅
UP更新不错过~
关注
  • 8
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
MIMO雷达正交波形是一种在多输入多输出雷达中常用的技术,用于实现多个发射天线的同时工作和接收端的相应处理,实现更高精度的目标检测和跟踪。在Matlab中,生成MIMO雷达正交波形的代码如下: %% 设置参数 wav_len = 256; % 波形长度 num_tx = 4; % 发送天线数 num_rx = 4; % 接收天线数 len = wav_len * num_tx; % 总长度 %% 生成正交码 W = sqrt(2)/2 * [1+1i, 1-1i; 1-1i, -1-1i]; % 正交码矩阵 X = zeros(num_tx, num_tx); for i = 1:num_tx idx = mod(i-1, 2)+1; % 正交码的序号 X(i,:) = [zeros(1,i-1), W(idx,:), zeros(1,num_tx-i)]; end %% 生成正交波形 Tx = zeros(len, num_tx); % 发送矩阵 for i = 1:num_tx Tx((i-1)*wav_len+1:i*wav_len, :) = repmat(X(i,:), wav_len, 1); end %% 接收矩阵 Rx = randn(len, num_rx); % 接收矩阵 %% 得到信道矩阵 H = Rx' * Tx / len; %% 相关矩阵 C = H * H'; % 发射机和接收机的正交波形之间的归一化自相关矩阵 Q = C \ eye(num_tx); % 矩阵求逆 W_LMMSE = Q * H' / (H * Q * H' + eye(num_rx)); % 最小均方误差滤波器权重矩阵 %% 输出测试样例 s = ones(1, wav_len); x = repmat(s, 1, num_tx); y_ture = H * x'; n = randn(len, 1); % 噪声 y = y_ture + n; y_filt = W_LMMSE * y; disp(['The input signal is:', num2str(y_ture')]); disp(['The output signal without filtering is:', num2str(y')]); disp(['The output signal with LMMSE filtering is:', num2str(y_filt')]); 以上代码展示了如何使用Matlab生成MIMO雷达正交波形以及相应的信道矩阵和最小均方误差滤波器的权重矩阵。同时,还给出了一个测试样例,输出了输入信号、没有滤波处理的输出信号和经过LMMSE滤波处理后的输出信号,以检验代码的正确性和有效性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飘羽@进阶

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值