数字锁相环:二阶环的FPGA实现(基于quartus+matlab)

数字锁相环 同时被 2 个专栏收录
2 篇文章 0 订阅
1 篇文章 0 订阅

写在前面的话:本篇文章参考自杜勇工程师的《锁相环技术原理及FPGA实现》

二阶环的FPGA实现(基于quartus+matlab)

\quad \quad 在前面的文章中分析了的心脏——环路滤波器,也分析了一阶环的FPGA实现,这篇文章讨论的是二阶环的FPGA实现。

一.依据模拟环设计数字环

\quad \quad 根据信号与系统的分析理论,一个系统完全由系统函数来确定,因此我们可从系统函数的角度出发,找到模拟电路与数字电路的转换关系,最终根据环路滤波器的数字域系统函数进行数字化设计。

1.1从模拟到数字——双线性变换

\quad \quad 连续时间系统H(s)的极点有两种情况:单重节点和多重节点。但是一个多重节点环节可以看成由多个单重极点环节级联构成。例如,对二重极点的系统,有

H ( s ) = A ( s − p ) 2 = A s − p A s − p H(s)=\frac{A}{(s-p)^2}=\frac{\sqrt{A}}{s-p}\frac{\sqrt{A}}{s-p} H(s)=(sp)2A=spA spA

因此,可以将一阶环节

A s − p = K a s − p \frac{\sqrt{A}}{s-p}=\frac{K_a}{s-p} spA =spKa

看成构成 H ( s ) H(s) H(s)的最基本环节,其中, K a K_a Ka为基本环节的增益。它对应于一阶微分方程

d y ( t ) d t − p y ( t ) = K a x ( t ) \frac{dy(t)}{dt}-py(t)=K_ax(t) dtdy(t)py(t)=Kax(t)

其系统结构如图1所示。对该系统离散化,主要是对系统中的积分运算离散化。


在这里插入图片描述

图 1 图1 1

\quad \quad 一次积分运算可以用梯形作数值计算,即

在这里插入图片描述

将上式第二行的积分用梯形法近似,则有


在这里插入图片描述

该式为一次积分运算离散化后的数值计算公式,其中的T为采样间隔。将自变量中的符号 T T T隐去,可写成差分方程的习惯表示形式

y ( n ) = y ( n − 1 ) + T 2 [ x ( n − 1 ) + x ( n ) ] y(n)=y(n-1)+\frac{T}{2}[x(n-1)+x(n)] y(n)=y(n1)+2T[x(n1)+x(n)]

两边取单边 z z z变换,并考虑到当 y ( n ) = 0 , n < 0 y(n)=0,n<0 y(n)=0n0


Y ( z ) = z − 1 + T 2 [ z − 1 X ( z ) + X ( z ) ] Y(z)=z^{-1}+\frac{T}{2}[z^{-1}X(z)+X(z)] Y(z)=z1+2T[z1X(z)+X(z)]

对上式进行整理,得到一阶环节的离散系统函数

H 1 ( z ) = Y ( z ) X ( z ) = T 2 1 + z − 1 1 − z − 1 H_1(z)=\frac {Y(z)}{X(z)}=\frac{T}{2}\frac{1+z^{-1}}{1-z^{-1}} H1(z)=X(z)Y(z)=2T1z11+z1

也就是说,一次积分单元离散后,是上式描述的离散系统。
\quad\quad 对连续一阶系统离散化后,可以得到其系统结构如下图所示


在这里插入图片描述

\quad\quad 根据上图,可求得离散的系统函数为

H i ( z ) = K a H 1 ( z ) 1 − p H 1 ( z ) H_i(z)=\frac{K_a H_1(z)}{1-pH_1(z)} Hi(z)=1pH1(z)KaH1(z)


在这里插入图片描述

\quad\quad 将此式与连续的一阶环路做对比,得出连续时间系统和离散时间系统之间的转换公式


在这里插入图片描述

1.2 环路滤波器的数字化

\quad\quad 有了系统函数转换表达式,即可获得各种模拟环路滤波器所对应的数字化系统函数表达式,进而获取其数字化实现结构。
\quad\quad 对于有源比例环路积分滤波器(理想积分滤波器)来讲,其数字化系统函数为


F ( z ) = 1 + s τ 2 s τ 1 = 2 τ 2 + T 2 τ 1 + T τ 1 z − 1 1 − z − 1 F(z)=\frac{1+s\tau_2}{s\tau_1}=\frac{2\tau_2+T}{2\tau_1}+\frac{T}{\tau_1}\frac{z^{-1}}{1-z^{-1}} F(z)=sτ11+sτ2=2τ12τ2+T+τ1T1z1z1

\quad\quad 由于在二阶锁相环路中,理想二阶环路具有共他两种环路无法比拟的优异性能,因此接下来主要讨论这种环路滤波器及其构成的锁相环路。
\quad\quad 对于上式,令


在这里插入图片描述
则上式变换为


在这里插入图片描述
其对应的系统结构可用下图来表示


在这里插入图片描述

1.3 理想二阶环的参数设计

各项参数如下:

  • 软件:Quartus prime 18.0
  • FPGA系统工作时钟速率=系统采样频率 f s f_s fs= 8 k H z 8 kHz 8kHz
  • 数字震荡器固有频率 f o = 400 H z f_o=400Hz fo=400Hz
  • 输入为10bit二进制补码数据
  • 输出为10bit二进制补码数据
  • 鉴相乘法器输出位宽:19比特
  • 鉴相滤波器系数位宽:8比特
  • 鉴相滤波器输出数据位宽:30比特
  • 环路增益K=34 Hz
  • NCO频率字位宽:30比特
  • NCO相位字位宽:35比特

\quad\quad 为便于比较,我们仍根据一阶环实例要求进行设计。根据前面的分析,理想二阶环的FPGA实现过程,不过是在一阶环的基础上增加一个环路滤波器功能模块而已。
\quad\quad 根据前面的推导,求取环路滤波器系数C1、C2的值,需要获取采样周期 T T T,以及滤波器时间常数 τ 1 τ_1 τ1 τ 2 τ_2 τ2的值。由于系统采样频率 f s = 8000 H z f_s=8000Hz fs=8000Hz T = 1 / f s = 1 / 8000 T=1/f_s=1/8000 T=1/fs=1/8000s。需要注意的是, τ 1 τ_1 τ1 τ 2 τ_2 τ2是典型的模拟环路滤波器参数,这也是为什么我们将目前的方法称为依据模拟环设计数字环的原因。
\quad\quad 如何计算 τ 1 τ_1 τ1 τ 2 τ_2 τ2?根据第前面关于环路滤波器的讨论,从环路相位裕度参数出发设计这两个参数,而相位裕度与阻尼系数ξ直接相关。根据图6-38的仿真结论,一般取阻尼系数ξ=0.7。对于理想二阶环来讲

ω n = K τ 1 ω_n=\sqrt{\frac{K}{\tau_1}} ωn=τ1K
ξ = τ 2 2 K τ 1 ξ=\frac{\tau_2}{2}\sqrt{\frac{K}{\tau_1}} ξ=2τ2τ1K

\quad\quad 注意,在上式中, K K K的单位为 r a d / s rad/s rad/s ω n ω_n ωn的单位为 r a d / s rad/s rad/s。现在,我们已经获取了环路增益参数( K = 34 H z = 213.6283 r a d / s K=34 Hz=213.6283 rad/s K=34Hz=213.6283rad/s)、阻尼系数( ξ = 0.7 ξ=0.7 ξ=0.7),还需要获取一个参数,比如 τ 1 、 τ 2 τ_1、τ_2 τ1τ2之间的关系,才能计算出最终的时间常数值,进而计算出 C 1 、 C 2 C1、C2 C1C2的值。
\quad\quad 根据模拟环路的性能分析,环路滤波器 3 d B 3dB 3dB截止带宽的大小直接影响到 V C O VCO VCO输出的信号质量,要计算出 τ 1 、 τ 2 τ_1、τ_2 τ1τ2之间的关系,需要首先确定环路滤波器3dB截止带宽的 f c f_c fc大小。根据前面的分析,取 f c = 10 H z f_c=10 Hz fc=10Hz(注意,公式中的截止频率单位为Hz),则有

10 = 2 2 τ 1 2 − 2 τ 2 2 10=\sqrt{\frac{2}{{2}{\tau_1^2-2\tau_2^2}}} 10=2τ122τ222

\quad\quad 结合前面的公式,带入 K , ξ K,ξ K,ξ的值,得到 τ 1 , τ 2 \tau_1,\tau_2 τ1,τ2的值,再根据 τ 1 、 τ 2 τ_1、τ_2 τ1τ2的值,分别计算环路滤波器系数C1,C2。

1.4 理想二阶环的 V e r i l o g H D L Verilog HDL VerilogHDL设计

\quad 这里只介绍二阶环的环路滤波器的 v e r l i o g verliog verliog 设计,由前面推导得到的二阶锁相环的Z域公式,将Z域公式转换到时域中,才能转换为我们可以用的形式。

F ( z ) = Y ( z ) X ( z ) = C 1 + C 2 z − 1 1 − z − 1 F(z)=\frac{Y(z)}{X(z)}=C_1+\frac{C_2 z^{-1}}{1-z^{-1}} F(z)=X(z)Y(z)=C1+1z1C2z1

\quad

C 2 z − 1 1 − z − 1 X ( z ) = D ( z ) \frac{C_2 z^{-1}}{1-z^{-1}}X(z)=D(z) 1z1C2z1X(z)=D(z)

z z z变换的性质,上式的时域表达式为:
C 2 x ( n ) + d ( n ) = d ( n + 1 ) C_2x(n)+d(n)=d(n+1) C2x(n)+d(n)=d(n+1)

结合整个 Z Z Z域表达式,可得出其最终的时域表达式为:
y ( n ) = C 1 x ( n ) + d ( n ) y(n)=C_1x(n)+d(n) y(n)=C1x(n)+d(n)
具体实现代码如下:

/*

MODULE DECLARATION

*/
module LoopFilter(
rst,
clk,
pd,
frequency_df
);




/*

FUNCTION DECLARATION

*/


/*

LOCAL PARAMETER

*/


/*

PORT DECLARATION

*/
input  rst;                              //复位信号,高电平有效
input  clk;                              //FPGA系统时钟:8 kHz
input  signed [29:0]  pd;                // 输入数据:8 kHz,数据源来自fir滤波器的输出
output signed [29:0]  frequency_df;      // 环路滤波器输出数据



/*

REG & WIRE DECLARATION

*/
reg signed[29:0]sum_d;
wire signed[29:0]pd_c2,pd_c1,sum;


/ACHIEVEMENT

assign pd_c1={{1{pd[29]}},pd[29:1]};//C1
assign pd_c2={{9{pd[29]}},pd[29:9]};//C2


always @(posedge clk or posedge rst)  
       if (rst)
          sum_d <= 0;
       else
          sum_d <= sum;
		  
assign sum = pd_c2 + sum_d;
assign frequency_df = sum_d + pd_c1;

endmodule

这里需要说明的是,为了简化运算,C1和C2以移位代替了乘法,所以数值采用了近似的方法。
\quad 再结合一阶环中的其他代码,就可以得到完整的二阶环 v e r l i o g verliog verliog代码。

二.二阶环路滤波器仿真相关结论

\quad 经过对二阶环的仿真,我们得出了下面的结论:

  • 理想二阶环路增益直接影响环路的锁定性能,当环路参数设定后,环路的最大增益就确定了,当增益超过这个值时,环路不能锁定。
  • 环路能够正常锁定的情况下,增益越大,锁定时间越大,锁定速度越快。
  • 理想二阶环路的捕获带宽在工程设计中是有限的。
  • 仅改变环路增益,对捕获带宽的影响不大。
  • 0
    点赞
  • 0
    评论
  • 18
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

飘羽@进阶

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值