- 博客(25)
- 资源 (1)
- 收藏
- 关注
原创 主动学习active learning方法汇总
更新2021/7/21 到目前为止看了不少主动学习的文献,简单做一下一些目前为止了解到的主动学习方法的整理吧。 起初是精读的文献中整理的,后来发现在精读文献的方法比较里也有一些比较经典的主动学习方法,附有略写名字和一些文献笔记,部分笔记可能因本人知识储备少存在错误。目录主动学习综述1、A survey on active learning and human-in-the-loop deep learning for medical image analysis主动学习方法...
2021-07-21 16:45:41 2108
原创 实例分割数据集(mask.png)转目标检测(yolo格式 .txt)+实例分割预处理
尺寸4096*4096, 需要经过预处理裁成512*512,同时mask是灰度图,要先转成黑白的,顺序是先二值化rbg to mask,再统一裁成512格式,最后再转换成对应的yolo格式。最近在做一个线粒体的实例分割数据集转目标检测数据集,记录一下。二值化,师弟写的,放上来记录一下。
2023-06-28 11:01:45 4849 9
原创 医学图像分割评估:dice的python构建
2022/3/22这几天遇到的坎,最开始写dice的时候是网上抄的一段代码overlap = np.sum((pred==class_index) * (gt==class_index)) dice=np.clip(((2 * overlap) / (np.sum(pred) + np.sum(gt) + 1)), 1e-4, 0.9999)后来师兄来帮我改了一下,在这里记录下来首先是计算dice的输入,从网络里输出的predict与ground truth
2022-03-22 11:14:12 6371
原创 Python输出的标签图处理:单通道的tensor转化为三通道的彩色图
跑代码的时候被一个图像转换绊了两天,记一下。这里要处理的单通道的图像,输出的label为0,1,2,3这样的,整体的图像是黑色,为tensor,type为int64,并且输出是一个batch的图图中是看不出颜色变化的,打印出来是这样的显示为单通道模式的tensor,这里的[4,512,512]指的是4个图拼一起(因为输出是一个batch,即4张图),512X512可以理解为512个0 1 2 3组起来。(这里的数据是自定义的语义分割数据集,加上背景4个classes)解决如
2022-03-15 09:32:54 8597 6
原创 mi-aod实验
环境:cuda11.0 +pytorch 1.7 +mmcv修改mmcv配置文件数据集:images 删减一半数据(未在目录中删减)configs 修改路径 修改cycle0,1q1:No module named 'mmdet' 调试了很久,搞了一上午终于搞好了解决办法 cd到miaod文件pip install cython wheelpip install pytest-runnerpip install pycocotoolspython setup.py c..
2021-12-01 11:44:46 701
原创 Cost-Effective Active Learning forDeep Image Classification阅读笔记
2016年的文章,总的来说其实亮点不多,但是有一个主动学习和无监督结合的一个方法挺引人注意的,放到现在可能有些过时。简单放一下ppt,文献过于简单,不需要太多的笔记这里强调的一个创新点是不光把置信度低的样本用上,连着置信度高的也用上了简单的交叉熵实现已标记样本的对cnn的一个训练低置信度,有点简单粗暴了j1j2是最有可能的两种所属分类,如果比较相近,msi对应就比较低,那么就认定是这个样本处于两个类的边界上取一个所有类的期望...
2021-11-27 22:52:47 1755
原创 Noise power spectrum in compressed sensing magnetic resonance imaging 阅读笔记
是mri上课的时候做的一个文献汇报,2021年的文献,上传一个当时汇报的pptNoise power spectrum in compressed sensing magnetic resonance imaging
2021-11-27 22:44:11 115
原创 Variational Adversarial Active Learning
iccv2019的文章介绍 基于池的半监督算法,总的来说vaal=GAN+VAE+AL,感觉还挺有新意的。理解难度大概是在loss上。值得注意的一点是与传统的主动学习算法不同,本文方法是任务不可知的,即它不依赖于我们试图获取标记数据的任务的性能。以往算法的算样本的不确定性其实是与模型相关的不确定性,比如dropout,就是模型抽走一层看样本的不确定性,这篇文章就是与样本有关的不确定性,与我们的模型任务是无关的。背景VAE:简单看成是编码解码,也就是将样本降采样到潜在空间,再上采样输出,想要.
2021-10-29 15:00:00 997
原创 Generative Adversarial Active Learning生成性对抗性主动学习文献笔记
文献1702.07956.pdf (arxiv.org)生成性对抗性主动学习介绍 这是第一个使用 GAN的主动学习工作,在它之后的GAN主动学习有不少,所以是首创性的工作,部分涉及分类的内容一笔带过。背景1:主动学习 拿来了当初介绍主动学习的ppt,总得来说可以帮助我们用少量的标记获得不错的训练效果,其重点主要在于挑选送于专家人工标记样本的策略上。这是一个基于池主动学习与本文方法的一个对比,其中池指的是unlabeled,,其方法就是从池里面挑选一部分样本交给专家标记...
2021-09-08 20:31:08 619
原创 8_2图解数据结构习题
class CQueue(object): def __init__(self): self.stack1=[] self.stack2=[] def push(self, value): self.stack1.append(node) #push操作栈和队列没有区别 def pop(self): """ :rtype: int pop操作则是将1的pop...
2021-08-10 17:01:43 105
原创 Improving Model Robustness by Adaptively Correcting Perturbation Levels with Active Queries文献笔记
通过主动查询自适应校正扰动水平提高模型鲁棒性AAAI2021的文献背景:主动学习 对模型初始化后,通过算法挑选出一系列最难区分、对模型提升最大、或最不确定的样本交给Oracle标注后再加入模型训练,从而对模型进行优化的过程。背景:通过训练提高模型鲁棒性 我们训练的模型被部署到现实世界的应用中之前,通常在实验室环境中接受培训和评估。然而,现实环境中存在大量的、不可预测的噪声,如果模型不够鲁棒,可能会导致严重的故障。通常的解决办法是在扰动的例子上训练神经网络是提高模型鲁棒性的主要方法。..
2021-08-09 08:53:08 234
原创 learning loss for active learning阅读笔记
针对主动学习设计的学习损失,cvpr2019的文献,文献下载链接1905.03677.pdf (arxiv.org)也是例会五分钟内介绍的文献,简单概括一下模型和核心内容。文献主要设计了一个主动学习的方法,不针对具体的学习任务,可以加在主模型上。这里的主模型可以是分类模型或者检测模型等。图a解释了这个模型:作者设计的主动学习模型是附加在主模型上的,它利用主模型特征层进行预测损失与训练。图b则是一个主动学习的流程:从未标注数据池中选出一部分数据标注为模型进行初始化,主model对unl..
2021-07-22 16:13:43 424
原创 Sequential Graph Convolutional Network for Active Learning阅读笔记
用于主动学习的序列图卷积神经网络cvpr2021的一篇文献文献链接2006.10219.pdf (arxiv.org)代码https://github.com/razvancaramalau/Sequential-GCN-for-Active-Learning----这篇文献是将图神经网络(GCN)引入到主动学习中来的,先简单理解一下GCN,我也查了不少资料,感觉因为数学水平不够的原因,都太难理解了。GCN是针对图结构数据的网络,图结构是由节点和边组成的。在本文献中,一批数据构成图结
2021-07-16 16:29:22 1173 2
原创 Contextual Diversity for Active Learning阅读笔记
主动学习的语境多样性 ECCV2020的一篇文献粗略读了一下引入了一个新概念,语境多样性CD,CD 的核心是我们对模型预测不确定性的量化,其定义为伪标记样本的softmax后验概率的混合。这种混合分布有效地捕捉了一组图像上的空间和语义上下文。导出CD度量后,用两种主动选择策略挑选样本标记...
2021-07-13 15:28:43 658
原创 ACTIVE LEARNING FOR CONVOLUTIONAL NEURAL NETWORKS : A CORE -SET APPROACH阅读笔记
ICLR 2018的一篇文献,看Multiple Instance Active Learning for Object Detection的在评价性能的时候看到了这个模型,由于是第一次接触主动学习,拿来粗略读一下。论文原文:1708.00489.pdf), (arxiv.org)
2021-07-09 17:49:25 1464 1
原创 Multiple Instance Active Learning for Object Detection论文阅读笔记
Multiple Instance Active Learning for Object Detection用于目标检测的多实例主动学习原文链接:[2104.02324] Multiple instance active learning for object detection (arxiv.org)代码:GitHub - yuantn/MI-AOD: Code for Multiple Instance Active Learning for Object Detection, CVPR 202
2021-07-06 18:56:11 1250
原创 医学分割图像十项全能比赛-task2心脏数据集的预处理
医学分割十项全能挑战,是从nnunet那里听说来的,下载心脏数据集之后发现有19个训练集,10个测试集,label标记为0背景1左心房。数据集是TCIA比赛中选出来的,
2021-06-11 17:02:21 2415
原创 LITS数据集预处理(二)
要求输出所有nii文件的size和spacing、origin、directionsize:nib库是(xyz),sitk为(zyxorigin:原始图像
2021-06-11 08:18:41 3056 1
原创 LITS数据预处理(一)
数据集是LITS2017,任务是批量进行预处理,包括重采样与归一化第一步是打算先读取长宽维度,转化为numpy形式重采样与归一化,然后再以nii格式保存1、读取c
2021-06-09 16:42:20 4565 8
原创 opencv+python+数字图像处理入门6/1
对图像生成高斯噪声import cv2import numpy as npimport matplotlib.pyplot as pltdef gasuss(image,mean=0,var=0.001): ''' :param image:图像 :param mean: 均值 :param var: 方差,越大噪声越大 :return: ''' image=image image=np.array(image/255,dtype
2021-06-01 16:39:24 186 1
原创 opencv+python+数字图像处理入门5/31
给图像加随机噪声并显示import cv2import numpy as npimport matplotlib.pyplot as pltdef randomnoise(image,noise): ''' :param image:图像 :param noise:需要添加的噪声点的数目 :return: imgn即加了噪声的图像 ''' img=cv2.imread(image) #传入image imgn=img rows
2021-05-31 14:13:34 90
原创 opencv+python+数字图像处理入门5/30
老师的题:打印九九乘法表x=int(1)y=int(1)i=int(1)for x in range(1,9): #用逗号而不是: for y in range(1,9): i=x*y print(x,'×',y,'=',i)
2021-05-30 09:42:36 91 1
原创 opencv+python+数字图像处理入门5/29
实现频率域滤波(理想,布特沃斯,高通import cv2import numpy as npimport matplotlib.pyplot as pltdef filteryy(img,F,N=2,type='lp',filter='butter'): ''' 构建filteryy函数 :param img: 图片显示 :param F: 设置滤波器的截止频率 :param N: 滤波器阶数,默认2阶 :param type: lp低通,h
2021-05-29 16:53:00 159
原创 opencv+python+数字图像处理入门 5/28
图像DFT变换(傅里叶变换) numpy实现import numpy as npimport cv2import matplotlib.pyplot as pltimg=cv2.imread('D:/lena.jpg',0) #取图像的灰度图img32=np.float32(img) #先转换为float形式f=np.fft.fft2(img32) #傅里叶变换函数,返回一个复数数组fshift=np.fft.fftshift(f) #将零频率分量移到中心去r
2021-05-28 16:12:47 171
原创 opencv+python+数字图像处理入门5/26-5/27
python读取一个文件夹下的全部图片import cv2import osdef read(name): for filename in os.listdir(name): print(filename) img=cv2.imread(name+"/"+filename) cv2.imshow(filename,img) cv2.waitKey(0)read('D:\KB180053')...
2021-05-27 17:02:07 185
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人