利用python爬取好友说说并分析
看了网上的许多博客,基本上都是一个样,基本的知识也没详细解释,我这次也想跟大家仔细分析一下,自己还是要有一定爬虫基础,本人技术有限,如果本文哪有错误或不够准确的地方,还望大牛们指点ヾ(๑╹◡╹)ノ"
一、环境配置:
- Python 3.6
- selenium (注意:先配置好自己浏览器的驱动,下载地址看下面)
- pymysql
- re
- requests
点击下载chrome的---->Chrome_webdriver
点击下载Firefox的---->Firefox_webdriver
点击下载IE的---->IE_webdriver
二、思路:
作为一个菜鸡学了一点爬虫,就想做一个好友的说说分析,最开始我以为这个爬虫很简单几十行就可以搞定,然而忽略了一些东西。。。。(先卖个关子)
先说说整个过程的想法:
看起来是不是很简单?(手动dog)那现在我们就来按步骤操作一下
1.找到包含好友的QQ信息的url(这里也有两种方法)
- 法一:
先点开好友这一栏,通过亲密度的排行来获取,这里我们点开F12,选中Network
一般这种信息都在XHR或者JS类型里面,大家可以在这里面找找,通过一会的寻找我们就发现friend_ship开头这xhr里面的items_list就包含了好友的QQ号和姓名,但是此方法获取的qq不全,只是大部分的qq
- 法二:
点击页面最上面的设置按钮,滑动可见好友,通过js的结果分析,随着下滑请求的url的页数都在变化,我们只要每次修改下页数的参数就可以获取所有好友的QQ,这个方法可以获取所有的好友的qq,但对于qq好友很少的朋友来说,此方法不适用
2.找到包含好友的说说的url
我们先随便点进一个好友的空间进行分析
点进去过后,我们F12 进行分析,发现一页最多存20条说说,以此我们可以通过说说总数(re提取)来算出一共有多少页,然后通过构造url来获取
通过以上的分析过后我们开始获取url:
我们先看看获取qq的第一种方法的url:
https://user.qzone.qq.com/proxy/domain/r.qzone.qq.com/cgi-bin/tfriend/friend_ship_manager.cgi?uin=你的QQ号&do=1&rd=0.55484478707938&fupdate=1&clean=1&g_tk=1376935160&qzonetoken=6e4e0b063e3f00421d98df35b330c8bb2158bb8697e5dc7a85a65b379407706960f0b1c422f9a26879&g_tk=1376935160
我们分析一下这里面每次登录都在变的参数
- g_tk (空间加密算法)
- qzonetoken (空间源码里面的参数)
那这两个参数我们要怎么获取呢?为什么每次登录这两个参数的都在变呢?
我们首先先要了解一下---->cookie
在看看session的基本概念
简单来说
session是指从我们打开一个网站开始至我们关闭浏览器一系列的请求过程。比如我们打开淘宝网站,淘宝网站的服务器就会为我们创建并保存一个会话对象,会话对象里有用户的一些信息,比如我们登陆之后,会话中就保存着我们的账号信息。会话有一定的生命周期,当我们长时间(超过会话有效期)没有访问该网站或者关闭浏览器,服务器就会删掉该会话对象。
cookies是指网站为了辨别用户身份,进行会话跟踪而储存在本地终端的数据,cookies一般再电脑中的文件里以文本形式储存。cookies其实是有键值对组成的。
快速查看 cookies 的方法:按F12进入浏览器的开发者模式——console——在命令行输入javascript:alert(document.cookie)
,再回车即可看见
所以我们登录过后,每次都访问url的时候都要保持着参数不变,也就是说cookie不能变
每次都要是同一个cookie(就相当于每次都是以你的身份保持着登录状态去访问他人空间),否则就会出现以下情况↓
理解好以上的几个问题过后,问题就解决了一大部分了
接着我们分析g_tk参数,在自己qq空间主页 F12 点JS类型文件,找到以下文件,查看Preview部分,分析一下其中的代码
其实这个程序的意思, 还是直接上代码吧
def get_tk(cookie):
hashes = 5381
for i in cookie['p_skey']: #提取cookie中p_skey每个字母
hashes += (hashes << 5) + ord(i) #加密过程,ord()将 字符转化为ASCII码
# << 二进制 左移运算 左移几位就相当于乘以2的几次方
return hashes & 2147483647 #二进制 与运算
# 比如 2&3 转为二进制 10&11
# 都是1结果为1,否则为0
# 所以二进制算出来是 10 返回2
# 还不懂的朋友,还是自行Baidu吧
随着我们分析第二个参数qzonetoken
这个参数很好获取,在我们空间主页右键查看网页源代码,Ctrl+F查找下可以找到,之后我们可以通过正则提取
ok,理解了上面的全部,基本就完成了80%了,接下来我们开始代码实现
三、代码实现:
先导入第三方库
import re, requests
import time, pymysql
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
- 首先是登录,我们这里用selenium模拟浏览器实现
def login():
driver = webdriver.Chrome() # 传入浏览器对象
wait = WebDriverWait(driver, 5) # 显式等待
driver.get('https://qzone.qq.com/')
driver.switch_to_frame('login_frame') #切换到登录窗口
input = wait.until(EC.presence_of_element_located((By.ID, 'switcher_plogin')))# 显式等待 找到账号密码登录按钮
time.sleep(1)
input.click() # 交互点击
driver.find_element_by_id('u').clear() #清空里面的内容
driver.find_element_by_id('u').send_keys('your_qq') #传入你的QQ
time.sleep(3)
driver.find_element_by_id('p').clear()
driver.find_element_by_id('p').send_keys('your_password') #传入你的密码
button = driver.find_element_by_id('login_button') #找到登录按钮
time.sleep(3)
button.click()
time.sleep(1)
driver.switch_to.default_content() # 将frame重新定位回来,不然后续会出错
return driver
- 通过传回来的driver对象获取网页源代码和cookies
通过源代码获取qzonetoken参数
def get_qzonetoken(html):
paa = re.compile(r'window\.g_qzonetoken = \(function\(\)\{ try\{return "(.*?)";\} catch\(e\)', re.S)
res = re.findall(paa, html)[0] # 因为返回的是列表形式,所以只取第一个元素
return res
注意:driver.get_cookies()
获取的cookies是散的,所以要进行以下操作:
def get_tk(cookie): #加密过程
hashes = 5381
for i in cookie['p_skey']:
hashes += (hashes << 5) + ord(i)
return hashes & 2147483647
cookies = driver.get_cookies()
for item in cookies:
cookie[item['name']] = item['value'] #将对应表达联系起来
# 上一步不懂的可以把 cookies的值输出来看一下
g_tk = get_tk(cookie)
3.将cookies传给requests,以保证都是在登录状态(最关键)
def back_session(driver):
mysession = requests.session() # 建立一个session对话
cookies = driver.get_cookies()
cookie = {}
for item in cookies:
cookie[item['name']] = item['value']
headers = {
'authority': 'user.qzone.qq.com',
'referer': 'https://qzone.qq.com/',
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
'accept-encoding': 'gzip, deflate, br',
'accept-language': 'zh-CN,zh;q=0.9',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.80 Safari/537.36'
}
c = requests.utils.cookiejar_from_dict(cookie, cookiejar=None, overwrite=True)
# 将字典转化为cookiejar形式
mysession.headers = headers # 请求头,防止反爬
mysession.cookies.update(c) # 更新cookies
return mysession # 返回带cookies的requests
- 存入MySQL
connection = pymysql.connect(host='your_host', port=3306, user='你的账户', passwd='你的密码', db='your_database')
connection.autocommit(True) #开启自动提交 不然每次执行
def save_mysql(say, stime, QQ, connection): #这里我存入说说、说说时间、qq号
stime = str(stime)
content = str(say)
QQ = str(QQ)
sql = 'insert into qq values ("{}","{}","{}")'.format(content, stime, QQ)
connection.query(sql)
# 数据库建表的时候 一定要把字符集改成utf8
看看效果图,爬了40多分钟,四万多条数据,有点小慢。。。,很慢。大家可以尝试下多线程爬取
完成以上步骤之后整个框架就都搭好了,其余数据的提取大家就先自己完成了吧(本文最后会给出GitHub地址),也希望大家看思路过后,自己操作,不仅仅是copy、paste and run
导出某个好友的数据库,用Notepad++过滤一些数据后,通过词云分析
import jieba
from matplotlib import pyplot as plt
from wordcloud import WordCloud
from PIL import Image
import numpy as np
path = r'your_data.text_path'
font = r'C:\Windows\Fonts\simkai.TTF' # 字体path
text = (open('C:/Users/hp/Desktop/233.txt', 'r', encoding='utf-8')).read() # 如果是中文的话encoding换成utf8
cut = jieba.cut(text) # 分词
string = ' '.join(cut)
print(len(string))
img = Image.open('your_photo_path') # 打开图片
img_array = np.array(img) # 将图片装换为数组
stopword = ['xa0'] # 设置停止词,也就是你不想显示的词,这里这个词是我前期处理没处理好,你可以删掉他看看他的作用
wc = WordCloud(
scale=4, #清晰度
background_color='white', #背景颜色
max_words=400, #最多单词
width=1000,
height=800,
mask=img_array,
font_path=font,
stopwords=stopword # 停用词
)
wc.generate_from_text(string) # 绘制图片
plt.imshow(wc)
plt.axis('off')
plt.figure()
#plt.show() # 显示图片
wc.to_file('F:/3.png') # 保存图片
最后我么就分析到以下图片,字越大说明出现次数最多
最后贴上我的代码链接 https://github.com/Leaderzhangyi/QQspider 希望大家能够共同改进