A New Optimizer Using Particle Swarm Theory

0、论文背景

该篇论文是PSO的改进版,利用局部最优变量lbest取代了之前的全局最优变量gbest。实际效果虽然没有大规模改进,但是也是一种新的想法。

Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]//MHS'95. Proceedings of the sixth international symposium on micro machine and human science. Ieee, 1995: 39-43.

1、lbest PSO

标准的PSO算法以及实现:标准PSO

本文介绍了一个“局部“版本的优化器,其中除了pbest(每个粒子跟踪的最佳解);还有lbest,它在粒子的局部拓扑邻域内获得,是一个局部最优解。粒子不是向pbest和gbest(整个组中最好的评价)移动,而是向pbest和“lbest”定义的点移动。

例如,在K=2模型中,粒子(i)的值与粒子(i-1)和粒子(i+1)进行比较,然后lbest(i)为这三个中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

身影王座

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值