0、论文背景
该篇论文是PSO的改进版,利用局部最优变量lbest取代了之前的全局最优变量gbest。实际效果虽然没有大规模改进,但是也是一种新的想法。
Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]//MHS'95. Proceedings of the sixth international symposium on micro machine and human science. Ieee, 1995: 39-43.
1、lbest PSO
标准的PSO算法以及实现:标准PSO。
本文介绍了一个“局部“版本的优化器,其中除了pbest(每个粒子跟踪的最佳解);还有lbest,它在粒子的局部拓扑邻域内获得,是一个局部最优解。粒子不是向pbest和gbest(整个组中最好的评价)移动,而是向pbest和“lbest”定义的点移动。
例如,在K=2模型中,粒子(i)的值与粒子(i-1)和粒子(i+1)进行比较,然后lbest(i)为这三个中