Python数据预处理--数据连续属性离散化

44 篇文章 4 订阅
8 篇文章 3 订阅

数据连续属性离散化

介绍:连续属性变换成分类属性,即连续属性离散化
在数值的取值范围内设定若干个离散划分点,将取值范围划分为一些离散化的区间,最后用不同的符号或整数值代表每个子区间中的数据值
分类:等宽法 / 等频法

等宽法

导入库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

创建一组年龄数据并使用cut进行分组

ages=[20,22,25,27,21,23,37,31,61,45,41,32]
# 有一组人员年龄数据,希望将这些数据划分为“18到25”,“26到35”,“36到60”,“60以上”几个面元

bins = [18,25,35,60,100]
cats = pd.cut(ages,bins)
print(cats)
print(type(cats))
print('-------')
# 返回的是一个特殊的Categorical对象 → 一组表示面元名称的字符串

在这里插入图片描述

用labels参数设置自己的区间名称

group_names=['Youth','YoungAdult','MiddleAged','Senior']
print(pd.cut(ages,bins,labels=group_names))

在这里插入图片描述

对DataFrame进行等分

df = pd.DataFrame({'ages':ages})
group_names=['Youth','YoungAdult','MiddleAged','Senior']
s = pd.cut(df['ages'],bins)  # 也可以 pd.cut(df['ages'],5),将数据等分为5份
df['label'] = s
cut_counts = s.value_counts(sort=False) 
print(df)
print(cut_counts)

*


在这里插入图片描述

利用散点图进行图示显示

plt.scatter(df.index,df['ages'],cmap = 'Reds',c = cats.codes)
plt.grid()
# 用散点图表示,其中颜色按照codes分类
# 注意codes是来自于Categorical对象

*

在这里插入图片描述

等频法

利用qcut进行四分位数切割

data = np.random.randn(1000)
s = pd.Series(data)
cats = pd.qcut(s,4)  # 按四分位数进行切割,可以试试 pd.qcut(data,10)
print(cats.head())
print(pd.value_counts(cats))
print('------')
# qcut → 根据样本分位数对数据进行面元划分,得到大小基本相等的面元,但并不能保证每个面元含有相同数据个数
# 也可以设置自定义的分位数(0到1之间的数值,包含端点) → pd.qcut(data1,[0,0.1,0.5,0.9,1])

*

在这里插入图片描述

利用散点图进行图示显示

plt.scatter(s.index,s,cmap = 'Greens',c = pd.qcut(data,4).codes)
plt.xlim([0,1000])
plt.grid()
# 用散点图表示,其中颜色按照codes分类
# 注意codes是来自于Categorical对象

*

在这里插入图片描述

Python数据预处理:

  • 2
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 好的,我理解了你的要求。关于Python数据预处理,下面是我的回答: Python是一种非常流行的编程语言,也被广泛用于数据科学领域。在进行数据分析前,通常需要进行数据预处理,以确保数据质量和准确性。 数据预处理的步骤通常包括数据清洗、数据转换、数据集成和数据归约等。其中,数据清洗是指对数据中的缺失值、异常值、重复值等进行处理;数据转换是指对数据进行标准化、规范化、离散化等处理;数据集成是指将多个数据源进行整合,形成一个完整的数据集;数据归约是指对数据进行降维处理,以便于后续分析。 Python提供了很多数据预处理的工具和库,比如NumPy、Pandas、Scikit-learn等,这些工具可以帮助我们更轻松地进行数据预处理和分析。 以上就是我关于Python数据预处理的回答,希望对你有所帮助。 ### 回答2: Python数据预处理是指对原始数据进行清洗、转换、整理和加工的过程,以便进行后续的数据分析和建模。数据预处理数据科学和机器学习中不可缺少的一环,其目的是提高数据的质量、减少错误和不确定性的影响,使数据更具可靠性和可用性。 在Python中,有许多工具和技术可用于数据预处理。下面是几个常用的Python数据预处理方法: 1. 数据清洗:使用Python数据处理库,如Pandas,可以删除重复值、处理缺失值、处理异常值和离群值等。可以使用drop_duplicates()函数删除数据中的重复值,使用dropna()函数处理缺失值,并使用isnull()和notnull()函数识别缺失值。 2. 数据转换:数据转换是将数据从一种形式转换为另一种形式。例如,可以使用Python中的函数将分类变量转换为数值表示,或使用独热编码(one-hot encoding)将分类变量转换为虚拟变量。 3. 特征缩放:特征缩放是将不同尺度的特征转换为统一的尺度。常见的特征缩放方法包括标准化(使用Z-score),归一化(将特征缩放到0-1范围)和正则化(将特征缩放到单位范数)。 4. 特征选择:特征选择是从原始数据中选择最相关或最有用的特征。可以使用Python中的特征选择库,如Scikit-learn,通过统计方法、特征重要性评估或正则化方法来选择特征。 5. 特征构造:特征构造是从现有特征中创建新的特征。可以使用Python中的函数和操作符来创建新的特征,例如计算两个特征的和、差或乘积。 6. 数据集划分:数据集划分是将原始数据集划分为训练集和测试集。可以使用Python中的库,如Scikit-learn,提供的函数和方法进行数据集划分,常见的划分方法包括随机划分和交叉验证。 Python数据处理库和工具使得数据预处理变得更加简单和高效。通过将这些方法结合起来,可以提高数据预处理的速度和准确性,从而为后续的数据分析和建模提供可靠的基础。 ### 回答3: Python数据预处理是指在数据分析和机器学习过程中使用Python编程语言对原始数据进行清洗、转换和重塑的过程。数据预处理数据分析的关键步骤,它可以帮助我们准备好的、适合用于建模和分析的数据集。 首先,数据预处理可以包括数据清洗。在数据清洗过程中,我们可以处理缺失的数据、异常值和重复值。Python提供了丰富的库和函数,可以快速有效地进行数据清洗操作,如使用pandas库进行数据筛选、填充缺失值和删除异常值。 其次,数据预处理还可以进行特征选择和特征变换。通过选择有意义的特征,可以提高模型预测的准确性和效率。Python中的scikit-learn库提供了多种特征选择方法,如方差阈值、相关性分析和递归特征消除等。另外,我们还可以对数据进行特征变换,如标准化、归一化和主成分分析等,以改善模型的性能。 最后,数据预处理还可以进行数据集划分和数据集合并。在机器学习任务中,将数据集分成训练集和测试集是常见的操作,用于训练和评估模型。Python中的scikit-learn库可以很方便地进行数据集划分。此外,我们还可以使用pandas库对不同数据集进行合并,以便于进行进一步的分析和建模。 总之,Python数据预处理是实现数据清洗、特征选择、特征变换和数据集操作的重要步骤。Python提供了丰富的库和函数,可以帮助我们高效地进行数据预处理,为后续的数据分析和机器学习任务提供可靠的数据基础。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值