Python数据预处理

一、什么是数据预处理

数据预处理是指在机器学习、数据分析和数据挖掘等领域中,对原始数据进行一系列的处理和转换,以便为后续的分析和建模做好准备。数据预处理是数据科学项目中的重要步骤,因为原始数据往往存在各种质量问题,如缺失值、异常值、重复数据、不一致的格式等,这些问题会直接影响模型的性能和最终结果的准确性。因此在数据分析中,对数据做数据预处理是必不可少的一个环节。

二、数据预处理的步骤

1、数据清洗:
  • 处理缺失值:通过删除、填充或插值等方法处理数据中的缺失值。

import pandas as pd

df = pd.DataFrame({
    'A': [1, 2, None, 4],
    'B': [None, 2, 3, 4],
    'C': [1, 2, 3, None]
})
df

图片

  • 删除含有缺失值的行


# 删除含有缺失值的行
no_null_data = df.dropna()
no_null_data

图片

  • 填充缺失值

# 填充缺失值
fillna_data_mean=df.fillna(value=df.mean())  # 使用每一列的平均值填充
fillna_data_mean

图片

filled_data_before=df.fillna(method='ffill')   # 使用前一个值填充
filled_data_before

图片


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴闹闹(●'◡'●)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值