文章目录
写在最前
这里是大数据处理技术的实训作业 ,学校使用的是“头歌”平台。(我已经不想吐槽了)
开始的几章很简单,所以没有写
其中有几章题目,仅仅需要ctrl+c ctrl+v即可,只是操作步骤麻烦一下,所以也没有写。
HBase的安装与简单操作
第一关:单机版安装
mkdir /app
cd /opt
tar -zxvf hbase-2.1.1-bin.tar.gz -C /app
vim /app/hbase-2.1.1/conf/hbase-env.sh
# 在末尾添加 export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_111
vim /app/hbase-2.1.1/conf/hbase-site.xml
替换原有的configuration标签
<configuration>
<property>
<name>hbase.rootdir</name>
<value>file:///root/data/hbase/data</value>
</property>
<property>
<name>hbase.zookeeper.property.dataDir</name>
<value>/root/data/hbase/zookeeper</value>
</property>
<property>
<name>hbase.unsafe.stream.capability.enforce</name>
<value>false</value>
</property>
</configuration>
vim /etc/profile
# 在末尾追加如下内容
#SET HBASE_enviroment
HBASE_HOME=/app/hbase-2.1.1
export PATH=$PATH:$HBASE_HOME/bin
source /etc/profile
第三关
put 'mytable','row1','data:1','zhangsan'
put 'mytable','row2','data:2','zhangsanfeng'
put 'mytable','row3','data:3','zhangwuji'
HBase 伪分布式环境搭建
第一关:伪分布式环境搭建
先按照 《HBase的安装与简单第一关配置好单机》,傻子平台。
vim /app/hbase-2.1.1/conf/hbase-site.xml
<!-- 替换configuration整体 -->
<configuration>
<property>
<name>hbase.rootdir</name>
<value>hdfs://localhost:9000/hbase</value>
</property>
<property>
<name>hbase.zookeeper.property.dataDir</name>
<value>/root/data/hbase/zookeeper</value>
</property>
<property>
<name>hbase.unsafe.stream.capability.enforce</name>
<value>true</value>
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
</configuration>
# 启动hadoop和hbase
start-all.sh
start-hbase.sh
# 查看进程
jps
# 在hdfs中验证
hadoop fs -ls /hbase
ZooKeeper入门-初体验
第一关 ZooKeeper初体验
tar -zxvf zookeepre-3.4.12.tar.gz /opt/zookeeper-3.4.12
cd /opt/zookeeper-3.4.12/conf
mv zoo_sample.cfg zoo.cfg
zkServer.sh start
# zkServer.sh stop
第2关:ZooKeeper配置
vim /opt/zookeeper-3.4.12/conf/zoo.cfg
把 “# maxClientCnxns=60 ”
改为
maxClientCnxns=100
第3关:Client连接及状态
zkServer.sh stop
vim /opt/zookeeper-3.4.12/conf/zoo.cfg
<!-- 修改为2182 -->
clientPort=2182
<!-- 添加preAllocSize=300 -->
preAllocSize=300
vim /opt/zookeeper-3.4.12/bin/zkEnv.sh
<!-- 修改第56行为 -->
ZOO_LOG_DIR="/opt/zookeeper-3.4.12"
zkServer.sh start
zkCli.sh -server 127.0.0.1:2182
ZooKeeper之分布式环境搭建
第1关:仲裁模式与伪分布式环境搭建
vim /opt/zookeeper-3.4.12/conf/zoo.cfg
修改默认。 修改zoo.cfg
这节有个智障操作,这里不吐槽了。按着步骤走吧。
<!-- zookeeper-3.4.12的zoo.cfg -->
<!-- 修改 -->
clientPort=2181
dataDir=/opt/zookeeper-3.4.12/tmp/data
<!-- 末尾追加 -->
server.1=127.0.0.1:2888:3888
server.2=127.0.0.1:2889:3889
server.3=127.0.0.1:2890:3890
第一个节点添加myid文件
mkdir -p /opt/zookeeper-3.4.12/tmp/data/
echo 1 > /opt/zookeeper-3.4.12/tmp/data/myid
cat /opt/zookeeper-3.4.12/tmp/data/myid
复制三个新节点出来
# 智障系统。您搁着我斗志斗勇呢呀
cp -r /opt/zookeeper-3.4.12/ /opt/zookeeper-3.4.12-01
cp -r /opt/zookeeper-3.4.12/ /opt/zookeeper-3.4.12-02
cp -r /opt/zookeeper-3.4.12/ /opt/zookeeper-3.4.12-03
第一个节点 修改zoo.cfg
vim /opt/zookeeper-3.4.12-01/conf/zoo.cfg
<!-- zookeeper-3.4.12-01的zoo.cfg -->
<!-- 仅修改这个就行 -->
dataDir=/opt/zookeeper-3.4.12-01/tmp/data
第二个节点 修改zoo.cfg
vim /opt/zookeeper-3.4.12-02/conf/zoo.cfg
<!-- zookeeper-3.4.12-02的zoo.cfg -->
<!-- 修改 -->
clientPort=2182
dataDir=/opt/zookeeper-3.4.12-02/tmp/data
第二个节点添加myid文件
echo 2 > /opt/zookeeper-3.4.12-02/tmp/data/myid
cat /opt/zookeeper-3.4.12-02/tmp/data/myid
第三个节点 修改zoo.cfg
vim /opt/zookeeper-3.4.12-03/conf/zoo.cfg
<!-- zookeeper-3.4.12-03的zoo.cfg -->
<!-- 修改 -->
clientPort=2183
dataDir=/opt/zookeeper-3.4.12-03/tmp/data
第三个节点添加myid文件
echo 3 > /opt/zookeeper-3.4.12-03/tmp/data/myid
cat /opt/zookeeper-3.4.12-03/tmp/data/myid
# 分别三个启动节点
/opt/zookeeper-3.4.12-01/bin/zkServer.sh start
/opt/zookeeper-3.4.12-02/bin/zkServer.sh start
/opt/zookeeper-3.4.12-03/bin/zkServer.sh start
第2关:伪分布式体验及分布式安装配置
智障平台,我重置了一次命令行,重新做了一遍才行。
zkCli.sh -server 127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183
create /quorum_test "quorum_test"
quit
Flume入门
第1关:Flume 简介
第一题
Source Channel Sink
第二题
名称 类型 属性集
第三题
可靠性 可恢复性
第2关:采集目录下所有新文件到Hdfs
start-dfs.sh
hadoop dfs -mkdir /flume
我不得不吐槽一下这个平台。
你说你资源不够你做什么平台嘛。
也是,我理解,随时启动一个hadoop确实很耗费资源,但你不能在启动脚本中再启动一次hadoop吗? 你在这跟我捉迷藏呢?真就担心我找到你哈?
a1.sources = source1
a1.sinks = sink1
a1.channels = channel1
# 配置source组件
a1.sources.source1.type = spooldir
a1.sources.source1.spoolDir = /opt/flume/data
##定义文件上传完后的后缀,默认是.COMPLETED
a1.sources.source1.fileSuffix=.FINISHED
##默认是2048,如果文件行数据量超过2048字节(1k),会被截断,导致数据丢失
a1.sources.source1.deserializer.maxLineLength=5120
# 配置sink组件
a1.sinks.sink1.type = hdfs
a1.sinks.sink1.hdfs.path =hdfs://localhost:9000/flume
#上传文件的前缀
a1.sinks.sink1.hdfs.filePrefix = flume
#上传文件的后缀
a1.sinks.sink1.hdfs.fileSuffix = .log
#积攒多少个Event才flush到HDFS一次
a1.sinks.sink1.hdfs.batchSize= 100
a1.sinks.sink1.hdfs.fileType = DataStream
a1.sinks.sink1.hdfs.writeFormat =Text
## roll:滚动切换:控制写文件的切换规则
## 按文件体积(字节)来切
a1.sinks.sink1.hdfs.rollSize = 512000
## 按event条数切
a1.sinks.sink1.hdfs.rollCount = 1000000
## 按时间间隔切换文件,多久生成一个新的文件
a1.sinks.sink1.hdfs.rollInterval = 4
## 控制生成目录的规则
a1.sinks.sink1.hdfs.round = true
##多少时间单位创建一个新的文件夹
a1.sinks.sink1.hdfs.roundValue = 10
a1.sinks.sink1.hdfs.roundUnit = minute
#是否使用本地时间戳
a1.sinks.sink1.hdfs.useLocalTimeStamp = true
# channel组件配置
a1.channels.channel1.type = memory
## event条数
a1.channels.channel1.capacity = 500000
##flume事务控制所需要的缓存容量600条event
a1.channels.channel1.transactionCapacity = 600
# 绑定source、channel和sink之间的连接
a1.sources.source1.channels = channel1
a1.sinks.sink1.channel = channel1
Flume进阶
第1关:拦截器的使用
start-dfs.sh
hadoop dfs -mkdir /flume
# Define source, channel, sink
#agent名称为a1
# Define source
#source类型配置为avro,监听8888端口,后台会自动发送数据到该端口
#拦截后台发送过来的数据,将y.开头的保留下来
# Define channel
#channel配置为memery
# Define sink
#落地到 hdfs://localhost:9000/flume目录下
#根据时间落地,3s
#数据格式DataStream
a1.sources = source1
a1.sinks = sink1
a1.channels = channel1
# 配置source组件
a1.sources.source1.type = avro
a1.sources.source1.bind = 127.0.0.1
a1.sources.source1.port = 8888
##定义文件上传完后的后缀,默认是.COMPLETED
a1.sources.source1.fileSuffix=.FINISHED
##默认是2048,如果文件行数据量超过2048字节(1k),会被截断,导致数据丢失
a1.sources.source1.deserializer.maxLineLength=5120
#正则过滤拦截器
a1.sources.source1.interceptors = i1
a1.sources.source1.interceptors.i1.type = regex_filter
a1.sources.source1.interceptors.i1.regex = ^y.*
#如果excludeEvents设为false,表示过滤掉不是以A开头的events。
#如果excludeEvents设为true,则表示过滤掉以A开头的events。
a1.sources.source1.interceptors.i1.excludeEvents = false
# 配置sink组件
a1.sinks.sink1.type = hdfs
a1.sinks.sink1.hdfs.path =hdfs://localhost:9000/flume
#上传文件的前缀
a1.sinks.sink1.hdfs.filePrefix = FlumeData.
#上传文件的后缀
a1.sinks.sink1.hdfs.fileSuffix = .log
#积攒多少个Event才flush到HDFS一次
a1.sinks.sink1.hdfs.batchSize= 100
a1.sinks.sink1.hdfs.fileType = DataStream
a1.sinks.sink1.hdfs.writeFormat =Text
## roll:滚动切换:控制写文件的切换规则
## 按文件体积(字节)来切
a1.sinks.sink1.hdfs.rollSize = 512000
## 按event条数切
a1.sinks.sink1.hdfs.rollCount = 1000000
## 按时间间隔切换文件,多久生成一个新的文件
a1.sinks.sink1.hdfs.rollInterval = 4
## 控制生成目录的规则
a1.sinks.sink1.hdfs.round = true
##多少时间单位创建一个新的文件夹
a1.sinks.sink1.hdfs.roundValue = 10
a1.sinks.sink1.hdfs.roundUnit = minute
#是否使用本地时间戳
a1.sinks.sink1.hdfs.useLocalTimeStamp = true
# channel组件配置
a1.channels.channel1.type = memory
## event条数
a1.channels.channel1.capacity = 500000
##flume事务控制所需要的缓存容量600条event
a1.channels.channel1.transactionCapacity = 600
# 绑定source、channel和sink之间的连接
a1.sources.source1.channels = channel1
a1.sinks.sink1.channel = channel1
第2关:自定义拦截器
参考链接
conf 配置文件
# Licensed to the Apache Software Foundatio