原文链接
https://www.sciencedirect.com/science/article/pii/S1746809421003888?via%3Dihub
摘要:
早期发现阻塞性和限制性肺病对于维持适当的肺功能至关重要,而肺功能在减少全球不断上升的死亡人数方面起着关键作用。尽管传统方法被广泛用于诊断这两种疾病,但它们的使用往往伴随着高成本、低舒适度、高患者努力依赖性以及对自然呼吸的干扰。因此,开发一种无创、廉价、可靠和舒适的检测这些呼吸道疾病的技术已成为一个重要的研究领域。因此,本研究提出了基于ECG和ECG衍生呼吸(EDR)的这两种肺部疾病的非侵入性自动识别方法。从ECG和EDR信号中观察到的形态变化中提取时间信息,以获得不同的特征。最后,使用监督分类器将受试者区分为正常、阻塞和限制类别。对90名受试者(包括正常受试者和患病受试者)评估的分类器性能表明,分类准确率超过98%。结果表明,该方法可以有效地用于阻塞性和限制性肺病的初步鉴别。
主要创新点:
引入了一个EDR模态进行多模态融合的分类。而通过心电信号进行EDR的提取的开销较小。
性能达到sota。