【2021】 ARRHYTHMIA CLASSIFICATION WITH HEARTBEAT-AWARE TRANSFORMER 基于心跳感知transformer的心律失常分类 | 提出了一种新的神经网络模型,将典型的心跳分类任务视为“翻译”问题 并添加heartbeataware注意机制来增强编码序列和解码序列之间的对齐,在使用ECG数据库(收集自2000多家医院的20万名患者,时间超过10年)进行训练后,独立测试数据集的验证结果表明,这种新的心跳感知转换器模型的性能优于经典转换器和其他序列对序列方法。最后,我们展示了编码器-解码器注意权重的可视化为变压器如何基于原始心电信号进行诊断提供了更多可解释的信息,这对临床诊断具有指导意义。 | 公司自建数据集 Yocaly ECG database 获得sota效果 可视化、可解释性效果良好 Attention heatmap |
【2017】【高引】【CinC】 Beat by beat-Classifying cardiac arrhythmias with recurrent neural networks 用递归神经网络逐拍分类心律失常 | 构建了一个不同的递归神经网络(RNN)集合,能够区分正常窦性心律、心房颤动、其他类型的心律失常和噪音太大而无法解释的信号。 分割:将原始的ECG信号分割为心跳片段。进而将给定任务重新表述为心跳序列分类任务,而不是原始ECG信号直接输入的任务。 目的:减少RNN运算时间。RNN时间复杂度对信号长度敏感。 在隐藏状态h(t)中添加了soft-attention | PhysioNet Computing in Cardiology (CinC) 2017 challenge which contains 12,186 unique single-lead ECG records of varying length F1score:0.79 |
【2019】【高引】 Mina-Multilevel knowledge-guided attention for modeling electrocardiography signals MINA:心电图信号建模的多层次知识引导注意 | 多层知识引导的注意网络(MINA) 通过分别提取多级(节拍、节律和频率级)领域知识特征,MINA通过多级注意模型将医学知识和ECG数据结合起来,使学习的模型具有高度的可解释性。 对基线漂移和高频噪声的鲁棒性 | PhysioNet Challenge 2017 databases 8528条数据 |
【2018】【高引】 Towards Understanding ECG Rhythm Classification Using Convolutional Neural Networks and Attention Mappings 利用卷积神经网络和注意映射理解心电图心律分类 | 分两步进行, 第一阶段生成一个分类器,其执行水平与2017年Physionet挑战赛的顶级提交相当, 第二阶段提取类别激活映射,以帮助更好地了解模型在进行分类时关注的波形区域。类激活映射是在softmax层之前使用全局平均池层生成的。 单导联设备 AliveCor 类激活映射图 权重相加 | PhysioNet Challenge 2017 databases 类激活映射图 |
【2021】MLBF-Net: A Multi-Lead-Branch Fusion Network for Multi-Class Arrhythmia Classification Using 12-Lead ECG MLBF网络:一种用于12导联心电图多类别心律失常分类的多导联分支融合网络 | 大多数方法都是将12导联的心电信号串联成一个矩阵,然后将该矩阵输入到深度神经网络中提取有用信息。 有完整性,但没有多样性 本文中,我们提出了一种新的多导联分支融合网络(MLBF网络)架构,通过集成多损耗优化(integrating multiloss optimization)来联合学习多导联心电图的多样性和完整性,从而实现心律失常分类。 MLBF网络由三部分组成:1)用于学习多导联心电图多样性的多导联特定分支;2) 将各分支的输出特征映射串联起来进行交叉导联特征融合,学习多导联心电图的完整性;3) 所有分支和串联网络的多损耗协同优化。 | ptbxl数据集 ICBEB数据集:0.855,达到最高 |
【重要】ECG attention
最新推荐文章于 2024-08-15 09:39:01 发布