直线裁剪算法
裁剪:计算机内部存储的图形往往比较大,而屏幕显示的只是图形的一部分,因此需要确定图形哪些部分落在显示区之内,哪些落在显示区之外,这个选择的过程就称为裁剪。
1. 最简单的裁剪方法是把直线扫描变换为各点是否在窗口内。但此方法太费时,效率比较低,一般不可取。
对于任意一点P(x,y)若满足下列不等式,则点P在矩形窗口内
2. 直线段的裁剪——>复杂图形裁剪的基础
要裁剪一条直线段,首先要判断此直线的位置:
1)它是否完全落在裁剪窗口内?
2)它是否完全在窗口外?
3)如果不满足以上两个条件,则计算它与一个或多个裁剪边界的交点。
Cohen-Sutherland算法(编码裁剪算法):
首先对直线段的端点进行编码。
基本思想:对每条直线段分三种情况处理:
1)若点p1和p2完全在裁剪窗口内——>“简取”之(保留这条直线)
2)若点p1(x1,y1),p2(x2,y2)均在窗口外,且满足下列四个条件之一:——>“简弃”之(不要了)
3)如果直线段既不满足“简取”的条件,也不满足“简弃”的条件?
——>需要对直线段按交点进行分段,分段后判断直线是“简取”还是“简弃”。
Cohen-Sutherland编码方法:
裁剪一条线段时,先求出端点p1和p2的编码code1和code2,然后进行二进制“或”运算和“与”运算。
【若这两个条件均不成立,则需要求出直线段与窗口边界的交点在交点处把线段一分为二。】
如裁剪如下图所示的直线段P1P2:
首先对P1P2进行编码
令直线段与窗口左边界的交点为P3,
则可知P1P3必在窗口外,可以简弃之。
再令直线段与窗口下边界的交点为P4,
剩下的直线段(P3P4)再进行进一步判断,code1|code2=0,全在窗口中,简取之。【点P在窗口边界也属于在窗口内】
算法的基本流程:
- 检查线段 P1P2 是否为完全可见,或完全不可见,对于这两种情况或完全取之,或完全弃之,否则转 2 .
- 找到 P1P2 在窗口外的一个端点 P1 (或 P2)
- 用窗口的边与 P1P2 的交点取代端点 P1 (或 P2)
- P1P2 线段是否完全可见,若是,则结束,否则转 2 继续执行
算法的细节:
直线与窗口边界的交点可如下求解:
已知直线和其两端点 ,
, 与水平线 Y=K 的交点为 (X,Y)
与铅垂线 X=R 的交点为
在进行裁剪时除了要求与边界的交点外,还要判断端点与窗口位置的关系(为了清楚应该求直线与那些边界的交点):
设一端点 P 的编码为 XXXX
若 XXXX & 0001 != 0 ,端点与左边界相交点;
若 XXXX & 0010 != 0 ,端点与右边界相交点;
若 XXXX & 0100 != 0 ,端点与下边界相交点;
若 XXXX & 1000 != 0 ,端点与上边界相交点;
存在的问题:
如图中线段全部在窗口外部,但是对两段端点进行或/与运算时,需要再次取交点进行运算,最坏情况下,被裁剪线段与窗口4条边计算交点,然后所得的裁剪结果却可能是全部舍弃。
核心代码:
def getcode(self, pos, rect):
code = 0
x = pos.x()
y = pos.y()
if x < rect.left():
code = code | 0x01
else:
code = code & 0xfe
if x > rect.right():
code = code | 0x02
else:
code = code & 0xfd
if y < rect.top():
code = code | 0x04
else:
code = code & 0xfb
if y > rect.bottom():
code = code | 0x08
else:
code = code & 0xf7
return code
def line_clip(self, line1, rt):
done = False # 裁剪完成标志
p1 = line1.p1()
p2 = line1.p2()
c1 = self.getcode(p1, rt)
c2 = self.getcode(p2, rt)
p = QPoint(0, 0)
line2 = QLine(p, p)
while not done:
if c1 == 0 and c2 == 0: # 线段完全可见
line2 = QLine(p1, p2)
done = True
elif c1 & c2 != 0: # 线段完全不可见
line2 = QLine(QPoint(0, 0), QPoint(0, 0))
done = True
else: # 部分可见
if c1 != 0: # p0不可见
code = c1
else: # p0可见,则p1一定不可见
code = c2
if code & 0x01 != 0: # 线段与窗口的左边有交
x = rt.left()
m = (p2.y() - p1.y()) / (p2.x() - p1.x())
y = p1.y() + int((x - p1.x()) * m)
p = QPoint(x, y)
elif code & 0x08 != 0: # 线段与窗口的下边有交
y = rt.bottom()
m = (p2.x() - p1.x()) / (p2.y() - p1.y())
x = p1.x() + int((y - p1.y()) * m)
p = QPoint(x, y)
elif code & 0x02 != 0: # 线段与窗口的右边有交
x = rt.right()
m = (p2.y() - p1.y()) / (p2.x() - p1.x())
y = p1.y() + int((x - p1.x()) * m)
p = QPoint(x, y)
elif code & 0x04 != 0: # 线段与窗口的上边有交
y = rt.top()
m = (p2.x() - p1.x()) / (p2.y() - p1.y())
x = p1.x() + int((y - p1.y()) * m)
p = QPoint(x, y)
if code == c1:
p1 = p
c1 = self.getcode(p1, rt)
else:
p2 = p
c2 = self.getcode(p2, rt)
return line2
加上UI界面实现效果:
PS: 如需参考完整代码,请移步:https://download.csdn.net/download/qq_42185999/11892408 进行下载