DeepCachNet A Proactive Caching Framework Based on Deep Learning in Cellular Networks论文阅读

DeepCachNet:蜂窝网络中基于深度学习的主动缓存框架

摘要

​ 在网络边缘的内容缓存被认为是用于增强蜂窝网络中内容传递效率的合适技术, 由于存储限制,在SBS(小型基站)缓存战略内容至关重要。但是,它需要事先未知的有关受欢迎程度传播的信息。此外,由于连接到SBSs每个移动用户对内容具有不同的偏好,所以内容的受欢迎程度是变化的。因此,用户所偏爱的内容的性质取决于用户内容的特征。本文提出了一种新型的在蜂窝网络中的基于深度学习主动缓存框架,称为DeepCachNet,该框架从连接到SBSs的用户的移动设备中收集了大量数据。将深度学习方法(自动编码器堆叠式降噪自动编码器)应用于所收集的数据,以分别提取用户内容的特征。所提取的特征用于估计核心网络处的内容受欢迎程度。 基于估计的内容受欢迎程度,将战略内容缓存在SBS上,以获得更高的回程卸载用户满意度。为了验证所提出框架的有效性,进行了案例研究,其中使用开发的android移动应用程序从连接的移动设备中收集了移动数据,并对所收集的数据进行了所提出框架的仿真。仿真结果表明,该框架解决了冷启动数据稀疏性问题,并在回程卸载和用户满意度方面取得了显着改善。 通过回传卸载和用户满意度,它分别可分别获得6.2%和30%的收益。


堆叠式降噪自动编码器SDA

https://blog.csdn.net/weixin_30298497/article/details/94881029

backhaul offloading ?
冷启动

https://www.jianshu.com/p/03bf81f9f6d9


介绍

​ 在蜂窝网络中,网络边缘缓存是最令人鼓舞的革命之一。 通过记录更接近用户的战略内容,缓存优化了蜂窝网络不同组件(包括核心网络无线电接入网络)的卸载能力。在网络边缘缓存战略内容时,越来越多地使用user-content交互和end-users的行为,体现了主动上下文感知缓存的时代[1,2]。通常,在主动缓存中,网络边缘用户终端SBSs主动缓存内容,这在回程卸载用户满意度方面提高了总体网络性能。主动缓存的现有方法[2,3]的关键概念依赖于内容与用户之间相关性的估计,通常以内容流行度矩阵的形式定义,其中矩阵的每个元素代表针对特定用户的特定内容的受欢迎程度。采用协作过滤(CF)有监督的机器学习方法来估计内容流行度矩阵中的缺失元素,以便可以将战略内容预先存储在网络的SBS中。但是,设计有效的主动缓存模型仍然面临重大挑战。 首先,用于主动缓存的内容受欢迎度矩阵剩余的部分稀疏且庞大,其中很少元素的rating\value是已知的。在大多数情况下,受欢迎的内容也很少有评价。 由于在稀疏内容流行度矩阵很少元素有rating,因此估计用户和内容之间的相关性并在网络边缘执行有效的主动缓存非常困难。其次,内容流行度矩阵仅反映user-content交互,而忽略了user和负责交互的content之间的隐式关系,这导致CF学习方法的性能较低效率低下,其中主要的原因就是冷启动问题和数据稀疏[4]。

​ 上述挑战降低了主动缓存的效率,因此提出了深度学习(DL)方法[5]。 在许多实际应用中构建合适的预测模型时,很难甚至不可能收集并标记大量的训练数据。而以无监督的方式从可用的原始数据(例如从移动传感器收集的数据)中提取隐藏特征,可以基本上消除标记大量训练数据的需求,并改善预测任务[6]。

​ 主动缓存中的DL通过解决冷启动数据稀疏性问题,有助于提高CF方法的性能。 DL用于提取在内容流行度矩阵中的每个用户和内容隐藏特征,并创建基于特征的内容流行度矩阵。基于特征的设置消除了内容流行度矩阵的稀疏性,这有助于CF方法 估计内容流行度矩阵中的缺失条目,克服数据稀疏性和冷启动问题,从而进一步提高了网络边缘主动缓存的有效性。此外,基于特征的设置还考虑了用户的空间属性,例如物理位置(即用户的移动路径)[7],由于用户的移动性,帮助在SBSs之间迁移数据的学习过程,并提高缓存效率。 这项研究工作的主要贡献总结如下:

  • 本文提出了一种基于DL的主动缓存框架,用于根据用户的内容流行度矩阵存储约束来逐步提高backhaul的效果。
  • 我们引入了新的DL方法来提取用户和内容的隐藏特征。 这些特征被用来开发基于特征内容流行度矩阵,该矩阵进一步被用于评估核心网络处的受欢迎内容,具体通过使用基于特征的协作过滤来实现。
  • 为了验证所提出框架的有效性,我们实现了该框架,并根据用户满意度backhaul load来衡量性能。

协作过滤CF

https://blog.csdn.net/mhtlee/article/details/18278981


相关工作

​ 最近,Golrezaei等人 [8]。提出了femtocaching的概念(有高存储量低速backhaul units的SBSs助手),并通过短距离传输执行内容的传递。具有存储功能的SBSs的任意分布在[9]中进行了研究,描述了内容的传输速率中断的可能性。对于设备到设备(D2D)的通信,在[10]中研究了基于随机几何的缓存框架。 其他从信息理论博弈论的角度研究缓存的方法,包括启用缓存的cache-enabled opportunistic interference alignment[11]以及content-aware user clustering和内容缓存[7]。


femtocaching

https://www.jianshu.com/p/9d7a312c90f6


基于深度学习的主动缓存框架

​ 在本节中,我们提出一个新的主动缓存框架,该框架可以收集检查主动处理连接到SBS的用户的移动数据。 所提出的框架通过使用DL方法从收集的移动数据中提取用户特征和内容特征。 通过使用合适的评估算法网络边缘 主动缓存 战略内容,提取的特征用于估计用户的时空需求。 DL方法和评估算法的计算和执行是在核心站点执行的,而缓存放置在SBSs上,在该SBSs上主动存储了需求量大(即非常受欢迎)的内容。图1显示了所提出框架的总体架构,其中由深度学习评估算法分布式数据库组成的学习模型位于核心站点,负责在缓存放置模型估计用户对内容的需求,在此模型中,储存了通过学习模型估算的热门和战略性内容。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OoDfRmYF-1589331664957)(…\2019-DeepCachNet A Proactive Caching Framework\1588511403674.png)]

​ 为了说明提议的框架的总体架构,我们假设使用D SBSs网络

I d I_d Idsmall cell d的无线链路的容量

I d ′ I'_d Idsmall cell d的回程链路的容量

在== I d > I d ′ I_d > I' _d Id>Id==的情况下,有限回程容量的情况是被认可的。

时间段T内,一组用户档案== H = { h 1 , h 2 , … , h Q } H = \{h_1,h_2,…,h_Q\} H={ h1h2hQ}==请求的内容总数M

用于传送 内容h的有限比特率为== B ( h ) B(h) B(h)==。

存档中每个内容h大小为== L ( h ) L(h) L(h),且 L m i n < L ( h ) < L m a x L_{min} <L(h)<L_{max} Lmin<L(h)<Lmax==。

每个SBS都以有限的存储容量驱动,并从存档H中缓存内容子集卸载 容量有限backhaul。然而,庞大的用户和内容量使得提取处理所需的信息以在SBSs中缓存所有用户的内容成为一个颇具挑战性的方案。这主要是由于缺乏 足够的回程存储限制。在这种情况下,两个要求是

  1. 在核心网络共同开发基于特征内容流行度矩阵 P P P,其中

    行表示用户

    列表示内容

    每个条目分别表示内容和用户特征评价/流行度

  2. 内容缓存 放置特定的SBS上。

假设通过使用近似或贪婪方法来解决繁琐的缓存放置[12、13],那么可以在SBSs上进行稀疏内容评价/流行度学习评价。 对于此任务,我们将在以下小节中描述提出框架的所有组件和工作过程。


Backhaul

backhaul可以翻译成回程,也叫回程线路。在现有的无线通信中,backhaul指的是基站和基站控制器之间的链接

(1一般用户先接入基站,

2基站再与基站控制器通信,

3然后进入核心网)

https://baike.baidu.com/item/Backhaul/9078738

什么是回程网络

https://blog.csdn.net/FairyJoyXie/article/details/78419315


原始数据收集

​ 提出框架的第一个主要挑战是收集管理 输入数据。该框架从用户的移动设备收集 移动数据。 为了从他们的移动设备收集用户的数据,有必要开发一个移动应用程序,该应用程序可以识别 用户的位置移动设备传感器的值,并将收集到的数据传送到缓存系统

数据预处理

​ 从用户的移动设备收集的原始数据可能包含一些不适当的多功能的干扰数据,因此在它们传送到下一个处理阶段之前需要被清除。 数据必须经过适当的结构和处理,以促进高效处理,例如,指定和提取相关特征。在主动缓存系统中处理数据很复杂,原因有三点:

  1. 数据必须实时处理,因为它们是实时收集的。
  2. 收集的数据多样,由于各式的传感器数据,多变的用户偏好,位置数据和用户-内容关系。
  3. 要处理的数据量大,例如,达到TB级。

为了促进模式匹配位置查询高性能关系数据库用于有效存储确定的数据,而分布式数据库用于优化 简单查询数据以实现可扩展性

特征提取

​ 特征提取是所提出框架的关键要素。 必须从收集的原始数据中提取两种类型的特征,其描述如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RkPADVir-1589331664961)(…\2019-DeepCachNet A Proactive Caching Framework\1588574608816.png)]

User Features

由于不同的用户可能会喜欢不同的内容,因此主动缓存中内容的流行度可能会在整个用户群中波动。 用户的内容偏好可能与他们的特征相关联,如图2a所示。 User Features包括:

  • 用户的个人特征,例如人口统计信息(例如性别和年龄),心情或个性。
  • 显式上下文包括提取显式上下文,将数据正确描述积累情况(例如,天气状况)的数据收集过程。
  • 隐式上下文,涉及从移动传感器中提取和收集隐藏或潜在上下文模式以表示用户上下文。

各种类型的用户特征的添加导致其维度的扩展,从而导致需要处理大量训练数据的任务。 因此,自动编码器用于确定各种特征之间的关系,并以低维表示形式提取它们。 通常,用户特征提取过程包括三个阶段:

  • 原始数据是从可用数据源,例如,WiFi,GPS,麦克风,活动应用程序和加速度计等移动传感器中累积的。
  • 使用特征工程从原始数据中提取一组特征,该特征工程包括计算统计数据,例如主导值,熵,标准差,平均值等。
  • 一种称为自动编码器无监督技术被应用于提取特征,以确定原始数据中的隐藏模式

自动编码器是一种无监督学习方法,通过应用反向传播目标值设置为与输入相等。 例如,

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值