Abstract:人脸聚类是挖掘未标记人脸的一个主要方法,在人脸标注和检索等方面有着广泛的应用。最近研究表明,有监督聚类可以显著提高性能。然而,它们通常包含启发式步骤,并且需要大量重叠的子图,这严重限制了准确性和效率。本文提出了一个不需要大量重叠子图的、完全可学习聚类框架。我们将聚类问题转化为两个子问题,具体来说,是两类图卷积网络:GCN-V与GCN-E,GCN-V是用来估计顶点的置信度,GCN-E是用来估计边的连接度。通过顶点的置信度与边的连接度,我们可以自然地组织更多的相关顶点,并将它们组合成簇。在两种大规模数据实验结果表明,该方法显著地提高了聚类精度,从而提高了识别模型的性能,使识别效率较现有的监督方法有较大提升。
Introduction
本文的核心是两个GCN网络,即GCN-V与GCN-E(如下图所示)。