一、前言
随着互联网的发展和数字图书馆的普及,图书数量急剧增长,用户面临着信息过载的问题。如何帮助用户从海量图书中发现符合自己兴趣的书籍成为一个重要挑战。协同过滤算法作为一种有效的推荐技术,在个性化推荐领域有着广泛的应用。
本个性化图书书目推荐系统采用 HTML、Spring Boot 和 MySQL 技术构建。HTML 用于构建前端用户界面,提供直观的交互页面,展示图书信息、用户登录注册以及推荐结果等内容。Spring Boot 作为后端框架,处理业务逻辑,如用户管理、图书管理和推荐算法的实现,其高效的开发特性便于快速搭建系统。MySQL 用于存储图书数据、用户信息以及用户阅读行为数据等,通过合理的数据库设计确保数据的完整性与一致性,三者协同为用户提供个性化图书推荐服务。
二、技术环境
前端:HTML、CSS、JavaScript
后端:SpringBoot、SpringMVC、Mybatis、Redis
插件:Maven Helper、Lombok、MybatisLog
工具:IDEA、Postman、Maven、Git、Navicat
环境:Windows10、MySQL
三、功能设计
3.1 管理员用例图如下图所示:
3.2 用户用例图如下图所示:
四、数据库设计
数据库的 E-R 图(实体 - 关系图)是一种强大的工具,用于直观地表示数据库中的实体及其之间的关系。在数据库设计中,E-R 图可以帮助我们清晰地理解数据的结构和流向。限于篇幅要求,仅列出关键部分实体属性图和E-R图,如下所述。
五、部分效果展示
5.1 用户首页界面,顶部显示用户昵称与消息提醒。中间是轮播图推荐热门图书,下方为分类图书区,如文学、科技等,