数理逻辑:一阶逻辑

1,一阶逻辑系统 F

1.1,F 的定义

一阶逻辑系统也称为谓词系统或者量化理论。一阶形式系统可写为 F=<\Sigma_F,TERM_F,FORMULA_F,AXIOM_F,RULE_F>,其中:

  • \Sigma_F 的通用逻辑符号包括:连接词(\sim ,\vee),量词(\forall),辅助符号( (,) )。非逻辑符号包括:可数无穷多个个体/函数/命题/谓词变元。任意多个个体/函数/命题/谓词常元。
  • TERM_F 可归纳定义如下:(1)若 x 为个体变元或常元,则 x\in TERM_F;(2)若 f 为 n 元函数常元或变元,t_1,...,t_n 为项,则 f(t_1,...,t_n) 为项;(3)任何项都可有限次应用(1)和(2)获得。
  • ATOM_F 由下列公式构成:设 P 为 n 元谓词常元或者变元,t_1,...,t_n 为项,则 P(t_1,...,t_n)\in ATOM_F
  • AXIOM_F=\left \{ AS_1\cup AS_2\cup AS_3\cup AS_4\cup AS_5 \right \}
  • RULE_F=\left \{ MP\cup Gen \right \}
  • FORMULA_F 可归纳定义如下:(1)ATOM_F \subseteq FORMLA_F;(2)若 A \in FORMULA_F 则 \sim A\in FORMULA_F;(3)若 B,C \in FORMUL_F 则 (B\vee C) \in FORMULA_F;(4)若 A \in FORMULA_F 且 x 是个体变元,则 \forall x.A\in FORMULA_F;(5)任何公式都可有限次应用规则(1)-(4)构造得到。

将 FORMULA_F 称为 F 语言,记为 L(F)。 

1.2,自由/约束出现

设 x 为个体变元

  • 称 x 在 A 中形如 \forall x.B 或者 \exists x.B 的子公式的出现称为约束出现
  • 变元的非约束的出现称为自由出现
  • x 在 A 中有约束出现,则称 x 为约束变元
  • x 在 A 中有自由出现,则称 x 为自由变元
  • 若 A 中无自由的个体,则称 A 为闭公式。可能包括函数变元、命题变元、谓词变元。
  • A 中除约束个体变元外无其他变元,则称 A 为句子

1.3,代入操作

个体变元代入(对项的代入):设 x_i,...,x_n 是个体变元,t_1,...,t_n 是项,令 \theta=S_{t_1,...,t_n}^{x_1,...,x_n}

  • 若 a 为个体常元,则 \theta(a)=a
  • 若 x 为个体变元,则 \theta(x)=\left\{\begin{matrix} x & \notin \left \{ x_1,...,x_n \right \} \\ t_i & x=x_i \end{matrix}\right.
  • 若 f 为函数常元,则 \theta(f(t_1',...,t_m;))=f(\theta(t_1'),...,\theta(t_m'))
  • 若 F 为函数变元,则 \theta(F(t_1',...,t_m'))=F(\theta(t_1'),...,\theta(t_m'))

个体变元代入(对公式的代入):设 x_1,...,x_n 是个体变元,t_1,...,t_n 是项,令 \theta=S_{t_1,...,t_n}^{x_1,...,x_n} :

  • 对原子公式 P(t_1',...,t_m'),有 \theta(P(t_1',...,t_m'))=P(\theta(t_1'),...,\theta(t_m'))
  • \theta(\sim A)=\sim \theta(A)
  • \theta (B\vee C)=\theta (B)\vee \theta(C)
  • \theta(\forall x.A)=\left\{\begin{matrix} \forall x.\theta(A) & x \notin\left \{ x_1,...,x_n \right \}\\ \forall x.S_{t_1,...,t_{i-1},t_{i+1},...,t_n}^{x_1,...,x_{i-1},x_{i+1},...,x_n}& x=x_i \end{matrix}\right.;

命题变元代入(对公式的代入):设 p_1,...,p_n 是命题变元,A_1,...,A_n 是公式,令 \theta=S_{A_1,...,A_n}^{p_1,...,p_n}

  • \theta(p)=\left\{\begin{matrix} p & p\notin\left \{ p_1,...,p_n \right \}\\ A_i &p=p_i \end{matrix}\right.
  • \theta (P(t_1',...,t_m'))=P(t_1',...,t_m'), P 为 n 元谓词常元或者变元,不包含命题变元,不进行替换。
  • \theta(\sim A)=\sim \theta(A)
  • \theta (B\vee C)=\theta (B)\vee \theta(C)
  • \theta (\forall x.A)=\forall x.\theta(A)

1.4,可代入(自由)

项的可代入:称项 t 对公式 A 中的个体变元 x 可代入(为自由的),如果对 t 中的每个变元 y,变元 x 在 \forall y./\exists y. 辖域内无自由出现。

公式的可代入:称公式 B 对 A 中的命题变元 p 可代入(为自由的),如果对 B 中的每个自由变元 y 而言,p 不出现在 \forall y./\exists y. 辖域内。

原则:代入前后约束出现的次数不改变。

1.5,公理集和规则集

公理集:

  • AS_1:A\vee A\supset A
  • AS_2:A\supset B \vee A
  • AS_3:A\supset B\supset (C\vee A\supset B\vee C)
  • AS_4:\forall x.A\supset S_t^{x}A其中项 t 对 A 中的 x 是自由的。
  • AS_5:\forall x.(A\vee B)\supset A\vee \forall x.B,其中 x 在 A 中无自有出现。

规则集:

  • MP:\frac{A\supset B,A}{B}
  • Gen:\frac{A}{\forall x.A}

2,F 的定理与导出规则

2.1,无/有前提依赖证明

一阶系统有两类证明方式:无前提依赖与有前提依赖。

  • 无前提依赖:不使用公设集中的公式,证明序列中仅出现公理以及通过应用规则得到的公式。
  • 带前提依赖:证明序列中可能包含公设集中的公式。

在前提依赖证明中,对 Gen 规则增加了相应限制,并且还需要一条额外的 \alpha \beta 规则。同时,还要区分公设集为有穷和无穷情况。

2.2,P 永真及P规则

称 A\in FORMULA_F 是 P 永真的,如果存在 P 中的永真式 B 以及命题变元代入 \sigma 使得 A=\sigma (B)

P-规则:

  • 若 A 是 P 中的永真式,则 \vdash_F AA 是 P 的公式。
  • 若 A 是 P 永真的,则 \vdash_F AA 是 F 的公式。
  • 若 \vdash_F A_1,...,\vdash_F A_n 且 A_1\wedge ...\wedge A_n\supset B 是 P 永真的,则 \vdash_F B

2.3,无前提依赖证明的协调性

取 q \in ATOM_P,定义映射 \psi:FORMULA_F\rightarrow FORMULA_P 如下:

  • 若 A \in ATOM_F,则 \psi(A)=q
  • \psi(\sim A)=\sim \psi(A)
  • \psi(B\vee C)=\psi(B)\vee \psi(C)
  • \psi(\forall x.A)=\psi(A)

若 \vdash_F A 则 \vdash_P\psi (A)

F 关于无前提依赖证明满足绝对协调及关于否定协调。

2.4,肯定出现及否定出现

设 A,B \in FORMULA_F,并将 A 中的派生连接词、量词全部用原始符号 \sim ,\vee ,\forall 替换,则:

  • 若 B 在 A 中的某个指定出现位置位于偶数个 \sim 的辖域中,则称 B 的该次出现为正出现或者肯定的
  • 若 B 在 A 中的某个指定出现位置位于奇数个 \sim 的辖域中,则称 B 的该次出现为负出现或者否定的
  • 若 B 在 A 中的所有指定出现都是肯定的,则称 B 在 A 中为肯定的
  • 若 B 在 A 中的所有指定出现都是否定的,则称 B 在A 中为否定的

\supset_{sub} :设 A,M,N \in FORMULA_F,且 y_1,y_2,...,y_n 为出现在 M 和 N 中的所有自由个体变元,则:

  • 若 M 在 A 中为肯定的,则 \vdash \forall y_1...\forall y_n.(M\supset N)\supset (A\supset A_N^{M})
  • 若 MA 中为否定的,则 \vdash \forall y_1...\forall y_n.(M\supset N)\supset (A_N^{M}\supset A)
  • 若 MA 中为肯定的,且 \vdash M\supset N,则 \vdash A\supset A_N^M
  • 若 MA 中为否定的,且\vdash M\supset N,则 \vdash A_N^M\supset A

\equiv_{sub}:设 A,M,N \in FORMULA_F,且 y_1,y_2,...,y_n为出现在MN中的所有自由个体变元,则:

  • \vdash \forall y_1...\forall y_n.(M\equiv N)\supset (A\equiv A_N^M)
  • 若 \vdash M\equiv N ,则 \vdash A \equiv A_N^M
  • 若 \vdash M\equiv N 且 \vdash A,则 \vdash A_N^M

证明:令 B 为用 N 替换 M 在 A 中所有肯定出现所得之公式;于是 A_N^M 必然是用 N 替换 M 在 B 中否定出现所得之公式。利用 (\supset_{sub}) ,可得 \vdash \forall y_1...y_n.(M\equiv N)\supset (A\equiv B) 及 \vdash \forall y_1...\forall y_n.(M\equiv N)\supset (B\equiv A_N^M)

2.5,\alpha \beta 条件

设 C \in FORMULA_Fy 不是 C 的自由变元且 y 对 C 中的 x 为自由的,则称 x 和 y 关于 C 满足 \alpha \beta条件,记作:(C,x,y)

  • 带入可逆性:C=S_x^yS_y^xC
  • 换名等价性:\vdash \forall x.C\equiv \forall y.S_y^xC
  • (\alpha \beta ) 规则:若 \vdash A,则 \vdash A_{\forall y.S_y^xC}^{\forall x.C}
  • \vdash \forall x.\forall y.A\equiv \forall y.\forall x.A
  • 若 t 对 A 中的 x 是自由的,则 \vdash S_t^xA\supset \exists x.A
  • \vdash A\supset \exists x.A
  • \vdash \forall x.(A\wedge B)\equiv \forall x.A\wedge \forall x.B
  • \vdash \exists x.(A\vee B)\equiv \exists x.A\vee \exists x.B
  • \vdash \forall x.A\vee \forall x.B\equiv \forall x.(A\vee B)
  • \vdash \exists x.(A\wedge B)\equiv \exists x.A\wedge \exists x.B
  • 若 (C,x,y),则 \vdash \exists x.C\equiv \exists y.S_y^xC
  • \exists_+:若 \Gamma \vdash S_t^xA,且 t 对 A 中的 x 是自由的,则 \Gamma \vdash \exists x.A
  • \exists_{-}:若 \Gamma ,A\vdash B 且 x 在 \Gamma \cup {B} 中不自由,则 \Gamma , \exists x.A\vdash B
  • C:若 \Gamma \vdash \exists x.A\Gamma ,S_y^xA\vdash B,且 y 对 A 中的 x 是自由的,但在 \Gamma \cup \left \{ \exists x.A,B \right \} 中不自由,则 \Gamma \vdash B
  • Case:若 \Gamma \vdash A\vee B,同时 \Gamma ,A\vdash C\Gamma ,B\vdash C,则 \Gamma \vdash C
  • \in_{-}:若 \Gamma ,A\vdash B 且 \Gamma ,\sim A\models B 则 \Gamma \vdash B

2.6,带前提依赖证明

给定有穷公式集 \Gamma,如果存在有穷序列 A_0,A_1,...,A_m=A,且对每个 i\leqslant m 必有一下几种情况成立:

  • Hyp:A_I\in \Gamma
  • Ax:A_i 是公理;
  • MP:存在 j,k<i ,使得 A_k=A_j\supset A_i;
  • Gen:存在 j<i,使得 A_i=\forall x.A_j,其中 x 在 \Gamma 中不自由;
  • \alpha \beta:存在j<i,公式 C,个体变元 x 和 y 满足 (C,x,y),且 A_i=A_{j\forall y.S_y^xC}^{\forall x.C}

则称 A 由 \Gamma 可证,记作 \Gamma \vdash A,并称 A_0,A_1,...,A_m 是由 \Gamma 导出 A 的证明。

若 \Gamma 是无穷集,则 \Gamma \vdash A 是指存在 \Gamma 的一个有穷子集 \Delta 使得 \Delta \vdash A

定理和派生规则:

  • [P]:若 \Gamma \vdash A_1,...,\Gamma \vdash A_n,且 A_1...\wedge A_n\supset B 是 P 永真的,则 \vdash B
  • [\supset_{sub}]:若 \Gamma \vdash AM 在 A 中是肯定的(/否定的)且 \vdash M \supset N(/\vdash N\supset M),则 \Gamma \vdash A_N^M
  • [\equiv_{sub}]:若 \Gamma \vdash A 且 \vdash M\equiv N 则 \Gamma \vdash A_N^M
  • sub-x:若\Gamma \vdash Ax 在 \Gamma 中不自由,t 对 A 中的 x 是可代入的,则 \Gamma \vdash S_t^xA
  • sub-p:若 \Gamma \vdash Ap 在 \Gamma 中不出现,B 对 A 中的 p 是可代入的,则 \Gamma \models S_B^pA

3,F 的语义及前束范式

3.1,函数单点取代操作

设 f:X\rightarrow Y,则任取 x_0\in X 及 y_0 \in Y,可以得到一个新的函数 f[x_0/y_0]:X\rightarrow Y,其定义如下:

f[x_0/y_0](x)=\left\{\begin{matrix} f(x) &x\neq x_0 \\ y_0&x=x_0 \end{matrix}\right.

性质:

  • 若 x_1 \neq x_2 ,则 f[x_1/y_1][x_2/y_2]=f[x_2/y_2][x_1/y_1]
  • f[x_0/y_1][x_0/y_2]=f[x_0/y_2]
  • f[x_0/f(x_0)]=f

3.2,解释和论域

给定二元偶  I=<D,I_0> 为 F 的一个解释,其中 D 是一个非空集合,称为论域。I_0 为如下定义的一个映射:

  • 若 a 为个体常元,则 I_0(a)\in D
  • 若 f 为 n 元函数常元,则 I_0(f):D^n\rightarrow D
  • 若 p 为命题常元,则 I_0(p)\in B,其中 B=\left \{ t,f \right \}
  • 若 Pn 元谓词常元,则 I_0(P):D^n\rightarrow B

给定解释 I=<D,I_0>,若映射 \sigma 满足:

  • 若 x 为个体变元,则 \sigma (x)\in D
  • 若 g 为 n 元函数变元,则 \sigma(g):D^n\rightarrow D
  • 若 q 为命题变元,则 \sigma(q)\in B
  • 若 Q 为 n 元谓词变元,则 \sigma(Q):D^n\rightarrow B

则称 \sigma 为 I 下的一个指派。用 \Sigma_I 表示 I 下所有指派构成的集合。

3.3,项和公式的语义

项的语义:设 I=<D,I_0> 以及 \sigma \in\Sigma_I,对每个 t\in TERM_F,可归纳定义其语义 I(t)(\sigma ) 如下:

  • 若 t=a 为个体常元,则 I(t)(\sigma )=I_0(a)
  • 若 t=x 为个体变元,则 I(t)(\sigma )=\sigma(x)
  • 若 t=f(t_1,...,t_n),其中 f 为 n 元函数常元,则 I(t)(\sigma )=I_0(f)(I(t_1)(\sigma ),...,I(t_n)(\sigma ))
  • 若 t=g(t_1,...,t_n),其中 g 为 n 元函数变元,则 I(t)(\sigma )=\sigma (g)(I(t_1)(\sigma ),...,I(t_n)(\sigma ))

公式的语义:设 I=<D,I_0>以及\sigma \in\Sigma_I,对每个 t\in FORMULA_F,可归纳定义其语义 I(A)(\sigma ) 如下:

  • 若 A=P(t_1,...,t_n),其中 P 为 n 元谓词常元,则 I(A)(\sigma )=I_0(P)(I(t_1)(\sigma ),...I(t_n)(\sigma ))
  • 若 A=Q(t_1,...,t_n),其中 Q 为 n 元谓词变元,则 I(A)(\sigma )=\sigma (P)(I(t_1)(\sigma ),...I(t_n)(\sigma ))
  • 若 A=\sim B,则 I(A)(\sigma )=\left\{\begin{matrix} t &I(B)(\sigma )=f \\ f& I(B)(\sigma )=t \end{matrix}\right.
  • 若 A=B\vee C,则 I(A)(\sigma )=\left\{\begin{matrix} f &I(B)(\sigma )=I(C)(\sigma )=f\\ t & other \end{matrix}\right.
  • 若 A=\forall x.B,则 I(A)(\sigma )=\left\{\begin{matrix} f &I(b)(\sigma [x/d]) =f\\ t&other \end{matrix}\right.

3.4,带入定理

设 A \in FORMULA_F,项 t 对 A 中的 x 可代入,公式 B 对 A 中的命题变元 p 可代入。则对任意解释 I 以及指派 \sigma \in \Sigma_I

  • 对任意的项 t' 有 I(S_t^xt')(\sigma )=I(t')(\sigma[x/d]),其中 d=I(t)(\sigma )
  • I(S_t^xA)(\sigma )=I(A)(\sigma [x/d]),其中 d=I(t)(\sigma )
  • I(S_B^pA)(\sigma )=I(A)(\sigma [p/v]),其中 v=I(B)(\sigma )

若 x 在 A 中不自由,则对任意的 d_1,d_2\in D,有 I(A)(\sigma[x/d_1])=I(A)(\sigma [x/d_2])

推论:若 A 为句子,则 A 的真值只与解释有关,而与指派无关。

3.5,可满足和模型

可满足:给定公式 A \in FORMULA_F,若存在解释 I 以及 \sigma \in \Sigma_I 使得 I(A)(\sigma )=t,则称 A 是可满足的,并记作 \models_{I,\sigma }A

模型:若对于公式 A,存在解释 I 使得每个 \sigma \in\Sigma_I 都有 \models_{I,\sigma }A 成立,则称 I 是 A 的模型,记作 \models_I A

永真式:若每个解释都是 A 的模型,就称 A 是永真式或者有效的。

可满足:给定公式集合 \Gamma ,若存在解释 I 以及 \sigma \in\Sigma_I 使得对每个 A \in\Gamma 都有 \models_I A,成立,则称 \Gamma 是可满足的,此时记作 \models_{I,\sigma }\Gamma

模型:特别的,若对每个 A\in\Gamma 都有 \models_I A,就称 I 是 \Gamma 的一个模型,记作 \models_{I}\Gamma

逻辑结果:若对每个解释 I 及 \sigma \in \Sigma_I,若 \models_{I,\sigma }\Gamma 则 \models_I A,就称 A 是 \Gamma 的逻辑结果,记作 \Gamma \models A。 

3.6,前束范式

设 A\in FORMULA_g,\exists \forall \in\left \{ \forall ,\exists \right \},  x 为个体变元:

  • 若 \exists \forall x.C 为 A 的子公式,且 x 在 C 中无自有出现,则称 \exists \forall x 为空量词。
  • 若 A 中无空量词,且量词均不出现在 \sim ,\vee 的辖域内,则称 A 为前束范式。

因此,若 A 为前束范式,当且仅当 A 形如:\exists \forall _1x_1...\exists \forall _nx_nB。其中 B 不含量词,\exists \forall_i \in\left \{ \forall ,\exists \right \}x_1,...,x_n 是彼此不同的个体变元。

若 A \in FORMULA_g 满足如下条件:

  • A 无空量词;
  • A 中的自由变元与约束变元不同名;
  • A 中不同的约束变元之间不同名;

则称 A 是矫正的。

设 A 是矫正的公式,并假设其中从左到右第 i 个量词为 \exists \forall_ix_i(i=1,...,n),那么 A 的前束范式为 \tilde{\exists \forall_1 }x_1...\tilde{\exists \forall_n }x_nB。其中:\tilde{\exists \forall_i }x_i 若肯定出现则不需要改变,否定改变取其对偶。

4,F 系统的元性质

4.1,可靠性

可靠性定理:

  • 若 \vdash A 则 \models A 。
  • 若 \Gamma \vdash A 则 \Gamma \models A 。

推论:若公式集 \Gamma 是可满足的,则 \Gamma 必是协调的。

证明:若 \Gamma 不协调,则 \Gamma \vdash A 且 \Gamma \vdash \sim A。由可靠性定理,有 \Gamma \models A 及 \Gamma \models \sim A。因为 \Gamma 是可满足的,不妨设 \models_{I,\sigma } \Gamma,则 \models_{I,\sigma }A 与 \models_{I,\sigma } \sim A 矛盾。

4.2,协调性

一阶语言分层:分别令 L_0(F),L_1(F),L_2(F)=L(F),为 F 中的全体句子、闭公式和公式构成的集合。令 TERM_0 为 F 中全体闭项(不含变元的项)构成的集合。

协调性:设 F 是一阶逻辑系统:

  • 若 Th(F)\neq L(F),则称 F 为绝对协调的。
  • 若 A \in L(F) ,则 A \notin Th(F) 或者 \sim A \notin Th(F),就称 F 关于否定协调。
  • 若 Th(\Gamma )\neq L(F),则称 \Gamma 是协调的。

 \Gamma ,\Gamma '\subseteq L(F) ,若 \Gamma \cup \Gamma ' 为协调的,则称 \Gamma 与 \Gamma ' 协调;否则称 \Gamma 与 \Gamma ' 不协调。特别的,若 \Gamma =\left \{ A_1,A_2,...,A_n \right \} 为有穷集时,则把 \Gamma 与 \Gamma '(不协调)称为 A_1,A_2,...,A_n 与 \Gamma ' 协调(不协调)。

协调集的性质:A_1,A_2,...,A_n 与 \Gamma 不协调当且仅当 \Gamma \vdash \sim A_1\vee ...\vee \sim A_n

推论:A 与 \Gamma 不协调当且仅当 \Gamma \vdash \sim A。 

4.3,独立性

AS_4 独立性:

将全称量词 \forall 的语义重新定义如下:

I(\forall x.A)(\sigma )=\left\{\begin{matrix} t &\exists d \in D \: s.t. \: \: I(A)(\sigma[x/d])=t \\ f & other \end{matrix}\right.

可以验证:除 AS_4 均为永真式,MP,Gen,\alpha \beta 均保持永真性。但是,公理 \forall x.P(x)\supset P(a) 在该解释下永真,因此 AS_4 独立。

AS_5 独立性:

选定某一个谓词常元 P,个体变元 x,以及命题常元 q。令 \gamma(A)为将 A 中 \forall xP(x) 全部替换为 q\wedge \sim q 所得之公式。考虑到前提为空的情形——若 A 可不使用 AS_5 证出,则 \gamma(A) 必然是永真式。

考虑公式 B=\forall x(p\vee \forall xP(x)) ,显然有 B \in AS_5,从而是永真式。但是 \gamma(B)=\forall x(p\vee P(x))\supset p\vee (q\wedge \sim q) 不是永真式,从而 AS_5 独立 

MP 独立性:

考虑在 F 中有 \vdash p\vee \sim p 成立,但是 AS_1\sim AS_5 中任一公里的长度均大于 p\vee \sim p 的长度;Gen 和 \alpha \beta 规则均不能减少已证定理的长度。因此 MP 规则独立。

Gen 规则独立性:

考虑新解释 I':对每个形如 \forall x.B 的公式有 I'(\forall x.B)(\sigma )=f;同时对其他公司的定义不变(\sigma \in \Sigma_{I'})。于是,若 \vdash_{F-Gen}A,则 I' 必然是 A 的模型。但 I' 不是 C=\forall x.(P(x)\vee \sim P(x)) 的模型,因此 ,从而 Gen 独立。

\alpha \beta 规则独立性:

首先,P(x)\supset P(x)\vdash_{F }\forall y.Q(y)\supset \forall x.Q(x)。其次,设 I'' 是在标准解释的基础上,将所有形如 \forall x.B 的值重赋为 f 解释,则对任意 A 若 P(x)\supset P(x)\vdash_{F-\alpha \beta }A,则 I'' 必为 A 的模型。但是,I'' 不是 \forall y.Q(y)\supset \forall x.Q(x) 的模型。因此 \alpha \beta 独立。

4.4,完全性

完全集:设 \Gamma \subseteq L(F),若对每个 A \in L(F) ,有 A \in \Gamma 或者有 \sim A \in \Gamma,则称 \Gamma 是完全的。(与形式系统完全性不是一个概念)

极大协调集:若公式集 \Gamma 即是完全的又是协调的,则称 \Gamma 是极大协调集。

极大协调集性质:设 \Gamma \subseteq L(F) 为极大协调集,则:

  • 对任意公式 A 而言,A 与 \sim A 恰好有一个在 \Gamma 中;
  • 若 A\notin \Gamma,则A 与 \Gamma 不协调。

协调集的可容许性质:设 <J,\subseteq > 是 2^{L(F)} 上的升链,且每个 \Gamma \in J 都是协的,则 \bigcup J 也是协调的。

协调集的可扩张性:若 \Gamma 是协调集,则存在极大协调集 \Gamma ' 使得 \Gamma \subseteq \Gamma '

形式系统的膨胀:设 F_1 与 F_2 是两个一阶形式系统:

  • 若 L(F_1)\subseteq L(F_2) ,则称 F_2 是 F_1 的膨胀,记作 F_1\leqslant F_2 。
  • 若 L(F_1)\subsetneqq L(F_2) ,则称F_2 是F_1 的真膨胀,记作 F_1<F_2 。

形式系统的扩张:设 F_1 与 F_2 是两个一阶形式系统,\Gamma_i \subseteq L(F_i),(i=1,2)

  • 若 F_1\leqslant F_2 且 Th(F_1\cup \Gamma_1)\subseteq Th(F_2\cup\Gamma_2),则称 F_2\cup\Gamma_2 为F_1\cup \Gamma_1 的扩张,记作 F_1\cup \Gamma_1\subseteq F_2\cup\Gamma_2 。
  • 若 F_1\cup \Gamma_1 \preceq F_2\cup\Gamma_2(偏序),且 Th(F_1\cup \Gamma_1)\cap L(F_1)= Th(F_2\cup\Gamma_2)\cap L(F_1),则称 F_2\cup\Gamma_2 为F_1\cup \Gamma_1 的保守扩张,记作 F_1\cup \Gamma_1 \preceq F_2\cup\Gamma_2 。 

若 Th(F_1\cup \Gamma_1)\subseteq Th(F_2\cup\Gamma_2) 则 F_1\cup \Gamma_1 为协调的当且仅当 F_2\cup\Gamma_2 为协调的。

若 F_1 \subseteq F_2 ,且两者的差别仅有个体常元,\Gamma \subseteq L(F),则 F_1\cup \Gamma \preceq F_2\cup\Gamma

节省解释和节省模型:若解释 I=<D,I_0> 满足 \#D \leqslant \#L(F) ,则称 I 是节省的。若 \Gamma 的模型是节省的,则称该模型为其节省模型。

语言保势扩张:给定两个一阶形式系统 F_1,F_2,若 F_1\subseteq F_2 且 \#(\Sigma_1-\Sigma_2)=\# L(F_1),则 \#L(F_2)=\#L(F_1)

协调集的可满足性:若 \Gamma \subseteq L(F) 是协调的,则必有节省解释 I 满足 \Gamma

G\ddot{o}del 完全性定理:

  • 若 \models A,则 \vdash A
  • 若 \models A,则 \Gamma \vdash A

4.5,紧致性

语法紧致性:一阶逻辑公式集 \Gamma 是协调的当且仅当其每个有穷子集是协调的。

语义紧致性:一阶逻辑公式集\Gamma 是可满足的当且仅当其每个有穷子集是可满足的。 

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

燕双嘤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值