【电磁场】矢量分析与场论基础1

矢量分析与场论基础1

更多请见:矢量分析与场论基础2 矢量分析与场论基础3

1、标量场和矢量场

  • 场量:既随时间、又随空间变化的物理量,如 A ( r → , t ) A(\overrightarrow{r},t) A(r ,t)
  • 矢量场与标量场:取决于物理量 A A A是标量还是矢量。
    • A A A为标量,如电位 φ \varphi φ,则 φ ( r → , t ) = φ ( x , y , z , t ) \varphi(\overrightarrow{r},t) = \varphi(x,y,z,t) φ(r ,t)=φ(x,y,z,t)
    • A A A为矢量,如速度 v → \overrightarrow{v} v ,则 v → ( r → , t ) = v x e x → + v y e y → + v z e z → \overrightarrow{v}(\overrightarrow{r},t) = v_x\overrightarrow{e_x} + v_y\overrightarrow{e_y} + v_z\overrightarrow{e_z} v (r ,t)=vxex +vyey +vzez 。相应地,矢量大小(模) v = ∣ v → ∣ = v x 2 + v y 2 + v z 2 v= |\overrightarrow{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2} v=v =vx2+vy2+vz2 ,单位矢量 e v → = v → v = v x v e x → + v y v e y → + v z v e z → = cos ⁡ α ⋅ e x → + cos ⁡ β ⋅ e y → + cos ⁡ γ ⋅ e z → \overrightarrow{e_v} = \frac{\overrightarrow{v}}{v} = \frac{v_x}{v}\overrightarrow{e_x} + \frac{v_y}{v}\overrightarrow{e_y} + \frac{v_z}{v}\overrightarrow{e_z} = \cos\alpha ·\overrightarrow{e_x} + \cos\beta ·\overrightarrow{e_y} + \cos\gamma ·\overrightarrow{e_z} ev =vv =vvxex +vvyey +vvzez =cosαex +cosβey +cosγez

2、三种坐标系变换:直角、柱、球

  • 三类积分
    • 线积分: d l → = e x → d x + e y → d y + e z → d z d \overrightarrow{l} = \overrightarrow{e_x} dx + \overrightarrow{e_y} dy + \overrightarrow{e_z} dz dl =ex dx+ey dy+ez dz
    • 面积分: d S → = e x → d y d z + e y → d x d z + e z → d x d y d \overrightarrow{S} = \overrightarrow{e_x} dydz + \overrightarrow{e_y} dxdz + \overrightarrow{e_z} dxdy dS =ex dydz+ey dxdz+ez dxdy
    • 体积分: d V = d x d y d z dV = dxdydz dV=dxdydz
    • 推导思路: d l → = e l → d l = ( e x → cos ⁡ α + e y → cos ⁡ β + e z → cos ⁡ γ ) d l = e x → d x + e y → d y + e z → d z d \overrightarrow{l} = \overrightarrow{e_l} dl = ( \overrightarrow{e_x} \cos{\alpha} + \overrightarrow{e_y} \cos{\beta} + \overrightarrow{e_z} \cos{\gamma} ) dl = \overrightarrow{e_x} dx + \overrightarrow{e_y} dy + \overrightarrow{e_z} dz dl =el dl=(ex cosα+ey cosβ+ez cosγ)dl=ex dx+ey dy+ez dz; d S → = e S → d S = ( e x → cos ⁡ α + e y → cos ⁡ β + e z → cos ⁡ γ ) d S = e x → d y d z + e y → d x d z + e z → d x d y d \overrightarrow{S} = \overrightarrow{e_S} dS = ( \overrightarrow{e_x} \cos{\alpha} + \overrightarrow{e_y} \cos{\beta} + \overrightarrow{e_z} \cos{\gamma} ) dS = \overrightarrow{e_x} dydz + \overrightarrow{e_y} dxdz + \overrightarrow{e_z} dxdy dS =eS dS=(ex cosα+ey cosβ+ez cosγ)dS=ex dydz+ey dxdz+ez dxdy
  • 结合图解把握三类坐标系下三个正交方向上的长度微元
    • 直角: e x → : d x 、 e y → : d y 、 e z → : d z \overrightarrow{e_x}:dx、 \overrightarrow{e_y}:dy、 \overrightarrow{e_z}:dz ex :dxey :dyez :dz
    • 柱: e ρ → : d ρ 、 e ϕ → : ρ d ϕ 、 e z → : d z \overrightarrow{e_\rho}:d\rho、 \overrightarrow{e_\phi}:\rho d\phi、 \overrightarrow{e_z}:dz eρ :dρeϕ :ρdϕez :dz
    • 球: e r → : d r 、 e ϕ → : r sin ⁡ θ d ϕ 、 e θ → : r d θ \overrightarrow{e_r}:dr、 \overrightarrow{e_\phi}:r \sin{\theta} d\phi、 \overrightarrow{e_\theta}:r d\theta er :dreϕ :rsinθdϕeθ :rdθ
    • 体积元: d V = d x d y d z = ρ d ρ d ϕ d z = r 2 sin ⁡ θ d r d ϕ d θ dV = dxdydz = \rho d\rho d\phi dz = r^2\sin{\theta}dr d\phi d\theta dV=dxdydz=ρdρdϕdz=r2sinθdrdϕdθ
  • 基矢量转换:“原基矢量”分别投影至“目标基矢量”
    • 将“直角”转换至“柱”,即 e x → 、 e y → 、 e z → \overrightarrow{e_x}、\overrightarrow{e_y}、\overrightarrow{e_z} ex ey ez 分别投影至 e ρ → 、 e ϕ → 、 e z → \overrightarrow{e_\rho}、\overrightarrow{e_\phi}、\overrightarrow{e_z} eρ eϕ ez
      e ρ → = e x → cos ⁡ ϕ + e y → sin ⁡ ϕ \overrightarrow{e_\rho} = \overrightarrow{e_x} \cos{\phi} + \overrightarrow{e_y} \sin{\phi} eρ =ex cosϕ+ey sinϕ
      e ϕ → = − e x → sin ⁡ ϕ + e y → cos ⁡ ϕ \overrightarrow{e_\phi} = - \overrightarrow{e_x} \sin{\phi} + \overrightarrow{e_y} \cos{\phi} eϕ =ex sinϕ+ey cosϕ
      e z → = e z → \overrightarrow{e_z} = \overrightarrow{e_z} ez =ez
    • 将“直角”转换至“球”,即 e x → 、 e y → 、 e z → \overrightarrow{e_x}、\overrightarrow{e_y}、\overrightarrow{e_z} ex ey ez 分别投影至 e r → 、 e ϕ → 、 e θ → \overrightarrow{e_r}、\overrightarrow{e_\phi}、\overrightarrow{e_\theta} er eϕ eθ
      e r → = e x → cos ⁡ ϕ sin ⁡ θ + e y → sin ⁡ ϕ sin ⁡ θ + e z → cos ⁡ θ \overrightarrow{e_r} = \overrightarrow{e_x} \cos{\phi} \sin{\theta} + \overrightarrow{e_y} \sin{\phi} \sin{\theta} + \overrightarrow{e_z} \cos{\theta} er =ex cosϕsinθ+ey sinϕsinθ+ez cosθ
      e ϕ → = − e x → sin ⁡ ϕ + e y → cos ⁡ ϕ \overrightarrow{e_\phi} = - \overrightarrow{e_x} \sin{\phi} + \overrightarrow{e_y} \cos{\phi} eϕ =ex sinϕ+ey cosϕ
      e θ → = e x → cos ⁡ ϕ cos ⁡ θ + e y → sin ⁡ ϕ cos ⁡ θ − e z → sin ⁡ θ \overrightarrow{e_\theta} = \overrightarrow{e_x} \cos{\phi} \cos{\theta} + \overrightarrow{e_y} \sin{\phi} \cos{\theta} - \overrightarrow{e_z} \sin{\theta} eθ =ex cosϕcosθ+ey sinϕcosθez sinθ
  • 矢量代数运算
    • 点积(标量): A → ⋅ B → = ∣ A → ∣ ∣ B → ∣ cos ⁡ θ \overrightarrow{A} · \overrightarrow{B} = |\overrightarrow{A}| |\overrightarrow{B}| \cos{\theta} A B =A ∣∣B cosθ
    • 叉积(矢量): A → × B → = C → \overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{C} A ×B =C ∣ C → ∣ = ∣ A → ∣ ∣ B → ∣ sin ⁡ θ |\overrightarrow{C}| = |\overrightarrow{A}| |\overrightarrow{B}| \sin{\theta} C =A ∣∣B sinθ (方向:右手法则)
      A → × B → = ( A x e x → + A y e y → + A z e z → ) × ( B x e x → + B y e y → + B z e z → ) = ∣ e x → e y → e z → A x A y A z B x B y B z ∣ \overrightarrow{A} \times \overrightarrow{B} = (A_x \overrightarrow{e_x} + A_y \overrightarrow{e_y} + A_z \overrightarrow{e_z}) \times (B_x \overrightarrow{e_x} + B_y \overrightarrow{e_y} + B_z \overrightarrow{e_z}) = {\begin{vmatrix} \overrightarrow{e_x} & \overrightarrow{e_y} & \overrightarrow{e_z} \\ A_x & A_y & A_z\\ B_x & B_y & B_z \end{vmatrix}} A ×B =(Axex +Ayey +Azez )×(Bxex +Byey +Bzez )= ex AxBxey AyByez AzBz
  • 9
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值