acwing算法基础课:整数二分算法

本文详细介绍了整数二分查找算法模板,包括check()函数的使用以及bsearch_1()和bsearch_2()的实现。通过一个查询升序数组元素位置的问题,展示了如何在实际场景中运用这些算法。适合理解并实践二分查找算法的开发者。
摘要由CSDN通过智能技术生成

整数二分算法模板

bool check(int x) {/* ... */} // 检查x是否满足某种性质

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

例题

给定一个按照升序排列的长度为 n 的整数数组,以及 q个查询。对于每个查询,返回一个元素 k的起始位置和终止位置(位置从 0开始计数)。如果数组中不存在该元素,则返回 -1 -1。

#include <iostream>

using namespace std;

const int N = 100010;

int arr[N], n, q, k;

int main()
{
    scanf("%d%d", &n, &q);
    for(int i = 0; i < n; i++) scanf("%d", &arr[i]);
    
    while(q--)
    {
        scanf("%d", &k);
        int l = 0, r = n - 1;
        while(l < r)
        {
            int mid = l + r >> 1;
            if(arr[mid] >= k) r = mid;
            else l = mid + 1;
        }
        
        if(arr[l] != k) cout << "-1 -1" << endl;
        else 
        {
            cout << l << ' ';
            int l = 0, r = n - 1;
            while(l < r)
            {
                int mid = l + r + 1 >> 1;
                if(arr[mid] <= k) l = mid;
                else r = mid - 1;
            }
            cout << l << endl;
        }
    }
    
    return 0;
}

测试样例

输入样例:
6 2
1 1 2 2 3 3
2
5
输出样例:
2 3
-1 -1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值