acwing算法基础课:最短路算法(Bellman-Ford算法)

本文详细解析了Bellman-Ford算法的时间复杂度、工作原理,并针对存在负权边和自环的情况,演示了如何使用备份数组优化最多经过k条边的最短距离查找。通过实例和测试样例,帮助读者理解如何在实际问题中应用该算法。
摘要由CSDN通过智能技术生成

Bellman-Ford算法

时间复杂度 O(nm), n 表示点数,m
表示边数

注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

例题

给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。
请你求出从1号点到n号点的最多经过k条边的最短距离,如果无法从1号点走到n号点,输出impossible。注意:图中可能存在负权回路。

#include <iostream>
#include <cstring>

using namespace std;

const int N = 510, M = 10010;

int n, m, k;
int dist[N], backup[N];

struct Edge
{
	int a, b, w;
}edges[M];

int bellman_fold()
{
	dist[1] = 0;
	
	for(int i = 0; i < k; i++)
	{
		memcpy(backup, dist, sizeof dist);
		for(int j = 0; j < m; j++)
		{
			int a = edges[j].a, b = edges[j].b, w = edges[j].w;
			dist[b] = min(dist[b], backup[a] + w);
		}
	}
	
	if(dist[n] > 0x3f3f3f3f / 2) return -1;
	return dist[n];
}

int main()
{
	cin >> n >> m >> k;
	
	memset(dist, 0x3f, sizeof dist);
	
	for(int i = 0; i < m; i++)
	{
		int a, b, w;
		cin >> a >> b >> w;
		edges[i] = {a, b, w};
	}
	
	int t = bellman_fold();
	if(t == -1) cout << "impossible" << endl;
	else cout << t << endl;
	
	return 0;
}

测试样例

输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值