Bellman-Ford算法
时间复杂度 O(nm), n 表示点数,m
表示边数
注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。
int n, m; // n表示点数,m表示边数
int dist[N]; // dist[x]存储1到x的最短路距离
struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{
int a, b, w;
}edges[M];
// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
for (int i = 0; i < n; i ++ )
{
for (int j = 0; j < m; j ++ )
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
if (dist[b] > dist[a] + w)
dist[b] = dist[a] + w;
}
}
if (dist[n] > 0x3f3f3f3f / 2) return -1;
return dist[n];
}
例题
给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。
请你求出从1号点到n号点的最多经过k条边的最短距离,如果无法从1号点走到n号点,输出impossible。注意:图中可能存在负权回路。
#include <iostream>
#include <cstring>
using namespace std;
const int N = 510, M = 10010;
int n, m, k;
int dist[N], backup[N];
struct Edge
{
int a, b, w;
}edges[M];
int bellman_fold()
{
dist[1] = 0;
for(int i = 0; i < k; i++)
{
memcpy(backup, dist, sizeof dist);
for(int j = 0; j < m; j++)
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
dist[b] = min(dist[b], backup[a] + w);
}
}
if(dist[n] > 0x3f3f3f3f / 2) return -1;
return dist[n];
}
int main()
{
cin >> n >> m >> k;
memset(dist, 0x3f, sizeof dist);
for(int i = 0; i < m; i++)
{
int a, b, w;
cin >> a >> b >> w;
edges[i] = {a, b, w};
}
int t = bellman_fold();
if(t == -1) cout << "impossible" << endl;
else cout << t << endl;
return 0;
}
测试样例
输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3