目录
导入包
import scipy.io as sio # load mat
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
visualize data
## data1
mat1 = sio.loadmat(r'D:\python_try\5. AndrewNg_ML\data\kmeans and pca\ex7data1.mat')
data1 = pd.DataFrame(mat1.get('X'), columns=['X1', 'X2'])
## data2
mat2 = sio.loadmat(r'D:\python_try\5. AndrewNg_ML\data\kmeans and pca\ex7data2.mat')
data2 = pd.DataFrame(mat2.get('X'), columns=['X1', 'X2'])
画出data2的图形
sns.lmplot('X1', 'X2', data=data2, fit_reg=None)
plt.show()
2D Kmeans
原理步骤
- 选择k个随机的点,成为聚类中心(cluster centroids)
- 对于数据集中的每一个数据,按照距离k个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关联的所有点聚成一类
- 计算每一组的平均值,将该组所关联的中心点移动到平均值的位置
重复step2、3直至中心点不发生改变
步骤编程
生成随机的k个中心
思路:sample(k)
def random_init(data, k):
return data.sample(k).as_matrix() #as_matrix(): 转换成array
分配聚类
思路:
- 单个分配
- 集体分配:套用单个
# 单个找寻聚类
def find_cluster(x, centroids):
distances = np.apply_along_axis(func1d=np.linalg.norm, a