聚类算法

概念:

一种典型的无监督学习算法,主要用于将相似的样本自动归于一个类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法

步骤 :

     1.设定聚类个数K的值(通过肘部法确定,或根据实际要聚的类数确定)

      2.生成K个聚类中心点

      3.计算所有样本到聚类中心点的距离,根据远近聚类

      4.更新质心,迭代聚类

      5.重复第四步直到满足聚类要求(通常就是确定的中心点不在改变)

方法1:K-means

函数说明:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans

sklearn中K-means有三种初始化中心点的方法:通过init指定,默认‘k-means++’

‘k-means++’ : 选择距离最远的点最为初始中心点

‘random’: 随机选择

 ndarray :给点初始中心点

方法2:小批量 K-Means——适用于数据量较大的情况

方法3:K-medoids(k-中心聚类算法)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值