蓝桥杯 历届试题 地宫取宝

第一次见到记忆化dfs,感觉有点像动态规划的思想,已经计算过的不再重复计算
参考:http://www.mamicode.com/info-detail-535827.html
问题描述
  X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。

地宫的入口在左上角,出口在右下角。

小明被带到地宫的入口,国王要求他只能向右或向下行走。

走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。

当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。

请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
  输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)

接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
  要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
样例输出
14


代码
#include<iostream>
#include<cstring>
using namespace std;

#define  N 1000000007
int n,m,k;
int map[50][50];
int vis[50][50][15][15];

int dfs(int x,int y,int num,int max)
{
	if(vis[x][y][num][max+1]!=-1)
	    return vis[x][y][num][max+1];   //记忆化dfs 
	if(x==n&&y==m)
	{
		if(num==k)
		    return vis[x][y][num][max+1]=1;
		else if(num==k-1&&max<map[x][y])
		    return vis[x][y][num][max+1]=1;
		else
		    return vis[x][y][num][max+1]=0;
	}
	long long s=0;
	if(x+1<=n)
	{
		if(max<map[x][y])
		{
			s+=dfs(x+1,y,num+1,map[x][y]);
			s%=N;
		}
		s+=dfs(x+1,y,num,max);
		s%=N;
	}
	if(y+1<=m)
	{
		if(max<map[x][y])
		{
			s+=dfs(x,y+1,num+1,map[x][y]);
			s%=N;
		}
		s+=dfs(x,y+1,num,max);
		s%=N;
	}
	return vis[x][y][num][max+1]=s%N;
}

int main()
{
	cin>>n>>m>>k;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		    cin>>map[i][j];
	}
	memset(vis,-1,sizeof(vis));   //初始化为-1的原因是标记此节点向下没有探索过 
	dfs(1,1,0,-1);    //max从-1开始因为有价值为0的物品,所以vis[2][3][2][3]代表在2,2处已拿2件物品,最大价值为2 
	cout<<vis[1][1][0][0]<<endl;
	cout<<vis[19][18][4][4]<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值